BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

581 related articles for article (PubMed ID: 18991631)

  • 1. Novobiocin and additional inhibitors of the Hsp90 C-terminal nucleotide-binding pocket.
    Donnelly A; Blagg BS
    Curr Med Chem; 2008; 15(26):2702-17. PubMed ID: 18991631
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Novobiocin and related coumarins and depletion of heat shock protein 90-dependent signaling proteins.
    Marcu MG; Schulte TW; Neckers L
    J Natl Cancer Inst; 2000 Feb; 92(3):242-8. PubMed ID: 10655441
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The heat shock protein 90 antagonist novobiocin interacts with a previously unrecognized ATP-binding domain in the carboxyl terminus of the chaperone.
    Marcu MG; Chadli A; Bouhouche I; Catelli M; Neckers LM
    J Biol Chem; 2000 Nov; 275(47):37181-6. PubMed ID: 10945979
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Novobiocin: redesigning a DNA gyrase inhibitor for selective inhibition of hsp90.
    Burlison JA; Neckers L; Smith AB; Maxwell A; Blagg BS
    J Am Chem Soc; 2006 Dec; 128(48):15529-36. PubMed ID: 17132020
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modulation of chaperone function and cochaperone interaction by novobiocin in the C-terminal domain of Hsp90: evidence that coumarin antibiotics disrupt Hsp90 dimerization.
    Allan RK; Mok D; Ward BK; Ratajczak T
    J Biol Chem; 2006 Mar; 281(11):7161-71. PubMed ID: 16421106
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Novobiocin induces a distinct conformation of Hsp90 and alters Hsp90-cochaperone-client interactions.
    Yun BG; Huang W; Leach N; Hartson SD; Matts RL
    Biochemistry; 2004 Jun; 43(25):8217-29. PubMed ID: 15209518
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Novobiocin Analogs as Potential Anticancer Agents.
    Dlugosz A; Janecka A
    Mini Rev Med Chem; 2017; 17(9):728-733. PubMed ID: 28019639
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stimulation of heat shock protein 90 chaperone function through binding of a novobiocin analog KU-32.
    Chatterjee BK; Jayaraj A; Kumar V; Blagg B; Davis RE; Jayaram B; Deep S; Chaudhuri TK
    J Biol Chem; 2019 Apr; 294(16):6450-6467. PubMed ID: 30792306
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Using natural product inhibitors to validate Hsp90 as a molecular target in cancer.
    Neckers L
    Curr Top Med Chem; 2006; 6(11):1163-71. PubMed ID: 16842153
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identifying a C-terminal ATP binding sites-based novel Hsp90-Inhibitor in silico: a plausible therapeutic approach in Alzheimer's disease.
    Khalid S; Paul S
    Med Hypotheses; 2014 Jul; 83(1):39-46. PubMed ID: 24785461
    [TBL] [Abstract][Full Text] [Related]  

  • 11. (-)-Epigallocatechin-3-gallate is a novel Hsp90 inhibitor.
    Yin Z; Henry EC; Gasiewicz TA
    Biochemistry; 2009 Jan; 48(2):336-45. PubMed ID: 19113837
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hsp90 inhibitors identified from a library of novobiocin analogues.
    Yu XM; Shen G; Neckers L; Blake H; Holzbeierlein J; Cronk B; Blagg BS
    J Am Chem Soc; 2005 Sep; 127(37):12778-9. PubMed ID: 16159253
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Nucleotide-dependent molecular switch controls ATP binding at the C-terminal domain of Hsp90. N-terminal nucleotide binding unmasks a C-terminal binding pocket.
    Söti C; Rácz A; Csermely P
    J Biol Chem; 2002 Mar; 277(9):7066-75. PubMed ID: 11751878
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of a novel novobiocin analogue as a putative C-terminal inhibitor of heat shock protein 90 in prostate cancer cells.
    Matthews SB; Vielhauer GA; Manthe CA; Chaguturu VK; Szabla K; Matts RL; Donnelly AC; Blagg BS; Holzbeierlein JM
    Prostate; 2010 Jan; 70(1):27-36. PubMed ID: 19739131
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evidence that the novobiocin-sensitive ATP-binding site of the heat shock protein 90 (hsp90) is necessary for its autophosphorylation.
    Langer T; Schlatter H; Fasold H
    Cell Biol Int; 2002; 26(7):653-7. PubMed ID: 12127946
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effectiveness of hsp90 inhibitors as anti-cancer drugs.
    Xiao L; Lu X; Ruden DM
    Mini Rev Med Chem; 2006 Oct; 6(10):1137-43. PubMed ID: 17073714
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Geldanamycin, radicicol, and chimeric inhibitors of the Hsp90 N-terminal ATP binding site.
    Hadden MK; Lubbers DJ; Blagg BS
    Curr Top Med Chem; 2006; 6(11):1173-82. PubMed ID: 16842154
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesis and biological evaluation of coumarin replacements of novobiocin as Hsp90 inhibitors.
    Kusuma BR; Khandelwal A; Gu W; Brown D; Liu W; Vielhauer G; Holzbeierlein J; Blagg BS
    Bioorg Med Chem; 2014 Feb; 22(4):1441-9. PubMed ID: 24461493
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthesis and biological evaluation of novobiocin analogues as potential heat shock protein 90 inhibitors.
    Gunaherath GM; Marron MT; Wijeratne EM; Whitesell L; Gunatilaka AA
    Bioorg Med Chem; 2013 Sep; 21(17):5118-29. PubMed ID: 23859777
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of novobiocin analogues that manifest anti-proliferative activity against several cancer cell lines.
    Burlison JA; Avila C; Vielhauer G; Lubbers DJ; Holzbeierlein J; Blagg BS
    J Org Chem; 2008 Mar; 73(6):2130-7. PubMed ID: 18293999
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 30.