BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 1899236)

  • 1. Serine utilization as a precursor of phosphatidylserine and alkenyl-(plasmenyl)-, alkyl-, and acylethanolamine phosphoglycerides in cultured glioma cells.
    Xu ZL; Byers DM; Palmer FB; Spence MW; Cook HW
    J Biol Chem; 1991 Feb; 266(4):2143-50. PubMed ID: 1899236
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Limited metabolic interaction of serine with ethanolamine and choline in the turnover of phosphatidylserine, phosphatidylethanolamine and plasmalogens in cultured glioma cells.
    Xu Z; Byers DM; Palmer FB; Spence MW; Cook HW
    Biochim Biophys Acta; 1993 Jun; 1168(2):167-74. PubMed ID: 8504151
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Serine and ethanolamine incorporation into different plasmalogen pools: subcellular analyses of phosphoglyceride synthesis in cultured glioma cells.
    Xu Z; Byers DM; Palmer FB; Cook HW
    Neurochem Res; 1994 Jun; 19(6):769-75. PubMed ID: 8065535
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Regulation of phospholipid metabolism in differentiating cells from rat brain cerebral hemispheres in culture. Serine incorporation into serine phosphoglycerides: base exchange and decarboxylation patterns.
    Yavin E; Zeigler BP
    J Biol Chem; 1977 Jan; 252(1):260-7. PubMed ID: 319093
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The ethanolamine requirement of keratinocytes for growth is not due to defective synthesis of ethanolamine phosphoacylglycerols by the decarboxylation pathway.
    Arthur G; Lu X
    Biochem J; 1993 Jul; 293 ( Pt 1)(Pt 1):125-30. PubMed ID: 8328953
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regulation of phospholipid metabolism in differentiating cells from rat brain cerebral hemipheres in culture. II. Incorporation of [U-14C]ethanolamine into 1-alkenyl,2-acyl-and 1,2 diacyl-ethanolamine phosphoglycerides.
    Yavin E; Kanfer JN
    J Biol Chem; 1975 Apr; 250(8):2891-5. PubMed ID: 1168189
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthesis of phosphatidylethanolamine and ethanolamine plasmalogen by the CDP-ethanolamine and decarboxylase pathways in rat heart, kidney and liver.
    Arthur G; Page L
    Biochem J; 1991 Jan; 273(Pt 1)(Pt 1):121-5. PubMed ID: 1989575
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of a lysophospholipase C that may be responsible for the biosynthesis of choline plasmalogens by Madin-Darby canine kidney cells.
    Strum JC; Daniel LW
    J Biol Chem; 1993 Dec; 268(34):25500-8. PubMed ID: 8244986
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biosynthesis of plasmenylethanolamine (1-O-alk-1'-enyl-2-acyl-sn-glycero-3-phosphoethanolamine) in the guinea pig heart.
    Xu FY; O K; Choy PC
    J Lipid Res; 1997 Apr; 38(4):670-9. PubMed ID: 9144082
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biosynthesis of choline plasmalogens in neonatal rat myocytes.
    Lee TC; Qian CG; Snyder F
    Arch Biochem Biophys; 1991 May; 286(2):498-503. PubMed ID: 1897971
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Selective deacylation of arachidonate-containing ethanolamine-linked phosphoglycerides in stimulated human neutrophils.
    Tessner TG; Greene DG; Wykle RL
    J Biol Chem; 1990 Dec; 265(34):21032-8. PubMed ID: 2250009
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biosynthesis of phosphatidylethanolamine via the CDP-ethanolamine route is an important pathway in isolated rat hepatocytes.
    Tijburg LB; Geelen MJ; Van Golde LM
    Biochem Biophys Res Commun; 1989 May; 160(3):1275-80. PubMed ID: 2499328
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lipids of Candida albicans: subcellular distribution and biosynthesis.
    Mago N; Khuller GK
    J Gen Microbiol; 1990 Jun; 136(6):993-6. PubMed ID: 2117043
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rapid remodeling of arachidonate from phosphatidylcholine to phosphatidylethanolamine pools during mast cell activation.
    Fonteh AN; Chilton FH
    J Immunol; 1992 Mar; 148(6):1784-91. PubMed ID: 1541818
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phosphatidylethanolamine derived from phosphatidylserine is deacylated and reacylated in rat hepatocytes.
    Samborski RW; Vance DE
    Biochim Biophys Acta; 1993 Mar; 1167(1):15-21. PubMed ID: 8461328
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The biosynthesis of phosphatidylserine and phosphatidylethanolamine from L-[3-14C]serine in isolated rat hepatocytes.
    Bjerve KS
    Biochim Biophys Acta; 1985 Mar; 833(3):396-405. PubMed ID: 3918578
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phospholipid metabolism of serine in Plasmodium-infected erythrocytes involves phosphatidylserine and direct serine decarboxylation.
    Elabbadi N; Ancelin ML; Vial HJ
    Biochem J; 1997 Jun; 324 ( Pt 2)(Pt 2):435-45. PubMed ID: 9182701
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Essential fatty acids and serine as plasmalogen precursors in relation to competing metabolic pathways.
    Cook HW; Thomas SE; Xu Z
    Biochem Cell Biol; 1991 Jul; 69(7):475-84. PubMed ID: 1793558
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Differential utilization of the ethanolamine moiety of phosphatidylethanolamine derived from serine and ethanolamine during NGF-induced neuritogenesis of PC12 cells.
    Ikemoto A; Okuyama H
    Neurochem Res; 2000 Feb; 25(2):293-301. PubMed ID: 10786715
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Conversion of 1-O-alkyl-2-acyl-sn-glycero-3-phosphocholine to 1-O-alk-1'-enyl-2-acyl-sn-glycero-3-phosphoethanolamine. A novel pathway for the metabolism of ether-linked phosphoglycerides.
    Strum JC; Emilsson A; Wykle RL; Daniel LW
    J Biol Chem; 1992 Jan; 267(3):1576-83. PubMed ID: 1309787
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.