These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

231 related articles for article (PubMed ID: 18992813)

  • 1. Ionic and neuromodulatory regulation of burst discharge controls frequency tuning.
    Mehaffey WH; Ellis LD; Krahe R; Dunn RJ; Chacron MJ
    J Physiol Paris; 2008; 102(4-6):195-208. PubMed ID: 18992813
    [TBL] [Abstract][Full Text] [Related]  

  • 2. SK channels provide a novel mechanism for the control of frequency tuning in electrosensory neurons.
    Ellis LD; Mehaffey WH; Harvey-Girard E; Turner RW; Maler L; Dunn RJ
    J Neurosci; 2007 Aug; 27(35):9491-502. PubMed ID: 17728462
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Routing the flow of sensory signals using plastic responses to bursts and isolated spikes: experiment and theory.
    Middleton JW; Yu N; Longtin A; Maler L
    J Neurosci; 2011 Feb; 31(7):2461-73. PubMed ID: 21325513
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Oscillatory and burst discharge across electrosensory topographic maps.
    Turner RW; Plant JR; Maler L
    J Neurophysiol; 1996 Oct; 76(4):2364-82. PubMed ID: 8899610
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regulation of burst dynamics improves differential encoding of stimulus frequency by spike train segregation.
    Mehaffey WH; Fernandez FR; Maler L; Turner RW
    J Neurophysiol; 2007 Aug; 98(2):939-51. PubMed ID: 17581845
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Muscarinic receptors control frequency tuning through the downregulation of an A-type potassium current.
    Ellis LD; Krahe R; Bourque CW; Dunn RJ; Chacron MJ
    J Neurophysiol; 2007 Sep; 98(3):1526-37. PubMed ID: 17615127
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Intrinsic frequency tuning in ELL pyramidal cells varies across electrosensory maps.
    Mehaffey WH; Maler L; Turner RW
    J Neurophysiol; 2008 May; 99(5):2641-55. PubMed ID: 18367702
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Neuromodulation of early electrosensory processing in gymnotiform weakly electric fish.
    Márquez BT; Krahe R; Chacron MJ
    J Exp Biol; 2013 Jul; 216(Pt 13):2442-50. PubMed ID: 23761469
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Model of gamma frequency burst discharge generated by conditional backpropagation.
    Doiron B; Longtin A; Turner RW; Maler L
    J Neurophysiol; 2001 Oct; 86(4):1523-45. PubMed ID: 11600618
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transient signals trigger synchronous bursts in an identified population of neurons.
    Marsat G; Proville RD; Maler L
    J Neurophysiol; 2009 Aug; 102(2):714-23. PubMed ID: 19474165
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dynamical properties of firing patterns in ELL pyramidal neuron under external electric field stimulus.
    Wang L; Liu S; Zhang L; Zeng Y
    Neurol Sci; 2013 Sep; 34(9):1517-22. PubMed ID: 23247601
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrosensory processing in Apteronotus albifrons: implications for general and specific neural coding strategies across wave-type weakly electric fish species.
    Martinez D; Metzen MG; Chacron MJ
    J Neurophysiol; 2016 Dec; 116(6):2909-2921. PubMed ID: 27683890
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Feature extraction by burst-like spike patterns in multiple sensory maps.
    Metzner W; Koch C; Wessel R; Gabbiani F
    J Neurosci; 1998 Mar; 18(6):2283-300. PubMed ID: 9482813
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dendritic modulation of burst-like firing in sensory neurons.
    Bastian J; Nguyenkim J
    J Neurophysiol; 2001 Jan; 85(1):10-22. PubMed ID: 11152701
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Variable synaptic strengths controls the firing rate distribution in feedforward neural networks.
    Ly C; Marsat G
    J Comput Neurosci; 2018 Feb; 44(1):75-95. PubMed ID: 29124504
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Differences in Sodium Channel Densities in the Apical Dendrites of Pyramidal Cells of the Electrosensory Lateral Line Lobe.
    Motipally SI; Allen KM; Williamson DK; Marsat G
    Front Neural Circuits; 2019; 13():41. PubMed ID: 31213991
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Neural heterogeneities and stimulus properties affect burst coding in vivo.
    Avila-Akerberg O; Krahe R; Chacron MJ
    Neuroscience; 2010 Jun; 168(1):300-13. PubMed ID: 20298764
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Logarithmic time course of sensory adaptation in electrosensory afferent nerve fibers in a weakly electric fish.
    Xu Z; Payne JR; Nelson ME
    J Neurophysiol; 1996 Sep; 76(3):2020-32. PubMed ID: 8890311
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Distribution and function of potassium channels in the electrosensory lateral line lobe of weakly electric apteronotid fish.
    Mehaffey WH; Fernandez FR; Rashid AJ; Dunn RJ; Turner RW
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2006 Jun; 192(6):637-48. PubMed ID: 16425062
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Conditional spike backpropagation generates burst discharge in a sensory neuron.
    Lemon N; Turner RW
    J Neurophysiol; 2000 Sep; 84(3):1519-30. PubMed ID: 10980024
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.