BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 18992990)

  • 1. Evaluation of the treatment of chromite ore processing residue by ferrous sulfate and asphalt.
    Moon DH; Wazne M; Koutsospyros A; Christodoulatos C; Gevgilili H; Malik M; Kalyon DM
    J Hazard Mater; 2009 Jul; 166(1):27-32. PubMed ID: 18992990
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Long-term treatment issues with chromite ore processing residue (COPR): Cr(6+) reduction and heave.
    Moon DH; Wazne M; Dermatas D; Christodoulatos C; Sanchez AM; Grubb DG; Chrysochoou M; Kim MG
    J Hazard Mater; 2007 May; 143(3):629-35. PubMed ID: 17275184
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of particle size and acid addition on the remediation of chromite ore processing residue using ferrous sulfate.
    Jagupilla SC; Moon DH; Wazne M; Christodoulatos C; Kim MG
    J Hazard Mater; 2009 Aug; 168(1):121-8. PubMed ID: 19272700
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Assessment of ferrous chloride and Portland cement for the remediation of chromite ore processing residue.
    Jagupilla SC; Wazne M; Moon DH
    Chemosphere; 2015 Oct; 136():95-101. PubMed ID: 25966327
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Particle size and pH effects on remediation of chromite ore processing residue using calcium polysulfide (CaS5).
    Moon DH; Wazne M; Jagupilla SC; Christodoulatos C; Kim MG; Koutsospyros A
    Sci Total Environ; 2008 Jul; 399(1-3):2-10. PubMed ID: 18486197
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Assessment of calcium polysulfide for the remediation of hexavalent chromium in chromite ore processing residue (COPR).
    Wazne M; Jagupilla SC; Moon DH; Jagupilla SC; Christodoulatos C; Kim MG
    J Hazard Mater; 2007 May; 143(3):620-8. PubMed ID: 17276597
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mobilization of Cr(VI) from chromite ore processing residue through acid treatment.
    Tinjum JM; Benson CH; Edil TB
    Sci Total Environ; 2008 Feb; 391(1):13-25. PubMed ID: 18067949
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ettringite-induced heave in chromite ore processing residue (COPR) upon ferrous sulfate treatment.
    Dermatas D; Chrysochoou M; Moon DH; Grubb DG; Wazne M; Christodoulatos C
    Environ Sci Technol; 2006 Sep; 40(18):5786-92. PubMed ID: 17007141
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reduction and immobilization of chromate in chromite ore processing residue with nanoscale zero-valent iron.
    Du J; Lu J; Wu Q; Jing C
    J Hazard Mater; 2012 May; 215-216():152-8. PubMed ID: 22417394
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Remediation of chromite ore processing residue by pyrolysis process with sewage sludge.
    Zhang D; Kong H; Wu D; He S; Hu Z; Hu X
    Bioresour Technol; 2009 Jun; 100(11):2874-7. PubMed ID: 19217773
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Application of sequential extractions and X-ray absorption spectroscopy to determine the speciation of chromium in Northern New Jersey marsh soils developed in chromite ore processing residue (COPR).
    Elzinga EJ; Cirmo A
    J Hazard Mater; 2010 Nov; 183(1-3):145-54. PubMed ID: 20674158
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Application of the Rietveld method to assess chromium(VI) speciation in chromite ore processing residue.
    Chrysochoou M; Dermatas D
    J Hazard Mater; 2007 Mar; 141(2):370-7. PubMed ID: 16842911
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The implications of integrated assessment and modelling studies for the future remediation of chromite ore processing residue disposal sites.
    Farmer JG; Paterson E; Bewley RJ; Geelhoed JS; Hillier S; Meeussen JC; Lumsdon DG; Thomas RP; Graham MC
    Sci Total Environ; 2006 May; 360(1-3):90-7. PubMed ID: 16203026
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Using human sweat to extract chromium from chromite ore processing residue: applications to setting health-based cleanup levels.
    Horowitz SB; Finley BL
    J Toxicol Environ Health; 1993 Dec; 40(4):585-99. PubMed ID: 8277520
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stabilization of chromium ore processing residue (COPR) with nanoscale iron particles.
    Cao J; Zhang WX
    J Hazard Mater; 2006 May; 132(2-3):213-9. PubMed ID: 16621279
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pyrolysis Treatment of Chromite Ore Processing Residue by Biomass: Cellulose Pyrolysis and Cr(VI) Reduction Behavior.
    Zhang DL; Zhang MY; Zhang CH; Sun YJ; Sun X; Yuan XZ
    Environ Sci Technol; 2016 Mar; 50(6):3111-8. PubMed ID: 26862886
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Calcium polysulfide remediation of hexavalent chromium contamination from chromite ore processing residue.
    Graham MC; Farmer JG; Anderson P; Paterson E; Hillier S; Lumsdon DG; Bewley RJ
    Sci Total Environ; 2006 Jul; 364(1-3):32-44. PubMed ID: 16442591
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effective Cr(VI) reduction and immobilization in chromite ore processing residue (COPR) contaminated soils by ferrous sulfate and digestate: A comparative investigation with typical reducing agents.
    Xu R; Wang YN; Li S; Sun Y; Gao Y; Guo L; Wang H
    Ecotoxicol Environ Saf; 2023 Oct; 265():115522. PubMed ID: 37769582
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chromium removal from aqueous solution by the ferrite process.
    Erdem M; Tumen F
    J Hazard Mater; 2004 Jun; 109(1-3):71-7. PubMed ID: 15177747
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Long-term stability of FeSO
    Wang X; Zhang J; Wang L; Chen J; Hou H; Yang J; Lu X
    J Hazard Mater; 2017 Jan; 321():720-727. PubMed ID: 27701061
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.