BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

263 related articles for article (PubMed ID: 18993061)

  • 1. Design and synthesis of a bis(cycloisodityrosine) analogue of RA-VII, an antitumor bicyclic hexapeptide.
    Lee JE; Hitotsuyanagi Y; Nakagawa Y; Kato S; Fukaya H; Takeya K
    Bioorg Med Chem Lett; 2008 Dec; 18(24):6458-61. PubMed ID: 18993061
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Aza-cycloisodityrosine analogue of RA-VII, an antitumor bicyclic hexapeptide.
    Hitotsuyanagi Y; Miyazawa A; Hinosawa TA; Nakagawa Y; Hasuda T; Takeya K
    Bioorg Med Chem Lett; 2013 Dec; 23(24):6728-31. PubMed ID: 24268554
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synthesis of [Tyr-5-Ψ(CH2NMe)-Tyr-6]RA-VII, a reduced peptide bond analogue of RA-VII, an antitumor bicyclic hexapeptide.
    Hasuda T; Hitotsuyanagi Y; Shinada M; Takeya K
    Bioorg Med Chem Lett; 2012 Apr; 22(8):2757-9. PubMed ID: 22460024
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Isolation, structure determination, and synthesis of allo-RA-V and neo-RA-V, RA-series bicyclic peptides from Rubia cordifolia L.
    Hitotsuyanagi Y; Odagiri M; Kato S; Kusano J; Hasuda T; Fukaya H; Takeya K
    Chemistry; 2012 Mar; 18(10):2839-46. PubMed ID: 22298232
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Per-N-methylated analogues of an antitumor bicyclic hexapeptide RA-VII.
    Hitotsuyanagi Y; Lee JE; Kato S; Kim IH; Kohashi H; Fukaya H; Takeya K
    Bioorg Med Chem; 2011 Apr; 19(7):2458-63. PubMed ID: 21382716
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synthesis of [L-Ala-1]RA-VII, [D-Ala-2]RA-VII, and [D-Ala-4]RA-VII by epimerization of RA-VII, an antitumor bicyclic hexapeptide from Rubia plants, through oxazoles.
    Hitotsuyanagi Y; Sasaki S; Matsumoto Y; Yamaguchi K; Itokawa H; Takeya K
    J Am Chem Soc; 2003 Jun; 125(24):7284-90. PubMed ID: 12797802
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Semisynthesis of an analogue of antitumor bicyclic hexapeptide RA-VII by fixing the Ala-2/Tyr-3 bond to Cis by incorporating a triazole cis-amide bond surrogate.
    Hitotsuyanagi Y; Motegi S; Hasuda T; Takeya K
    Org Lett; 2004 Apr; 6(7):1111-4. PubMed ID: 15040735
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthesis of [Gly-1]RA-VII, [Gly-2]RA-VII, and [Gly-4]RA-VII. Glycine-containing analogues of RA-VII, an antitumor bicyclic hexapeptide from Rubia plants.
    Hitotsuyanagi Y; Hasuda T; Aihara T; Ishikawa H; Yamaguchi K; Itokawa H; Takeya K
    J Org Chem; 2004 Mar; 69(5):1481-6. PubMed ID: 14987000
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Syntheses and Structure-Activity Relationship Studies of Antitumor Bicyclic Hexapeptide RA-VII Analogues].
    Hitotsuyanagi Y
    Yakugaku Zasshi; 2024; 144(5):553-565. PubMed ID: 38692932
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Design and synthesis of analogues of RA-VII-an antitumor bicyclic hexapeptide from Rubiae radix.
    Hitotsuyanagi Y
    J Nat Med; 2021 Sep; 75(4):752-761. PubMed ID: 34244894
    [TBL] [Abstract][Full Text] [Related]  

  • 11. RA-dimer B, a New Dimeric RA-series Cyclopeptide Incorporating Two Different Types of Cycloisodityrosine Units, from Rubia cordifolia L.
    Hitotsuyanagi Y; Tsuchiya T; Ohata M; Yoshida A; Fukaya H; Park HS; Takeya K; Kawahara N
    Chem Asian J; 2016 Dec; 11(23):3389-3397. PubMed ID: 27863076
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Key analogs of the tetrapeptide subunit of RA-VII and deoxybouvardin.
    Boger DL; Zhou J; Winter B; Kitos PA
    Bioorg Med Chem; 1995 Dec; 3(12):1579-93. PubMed ID: 8770383
    [TBL] [Abstract][Full Text] [Related]  

  • 13. RA-XXV and RA-XXVI, Bicyclic Hexapeptides from Rubia cordifolia L.: Structure, Synthesis, and Conformation.
    Hitotsuyanagi Y; Hirai M; Odagiri M; Komine M; Hasuda T; Fukaya H; Takeya K
    Chem Asian J; 2019 Jan; 14(1):205-215. PubMed ID: 30393964
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthesis and inhibition of cancer cell proliferation of (1,3')-bis-tetrahydroisoquinolines and piperazine systems.
    Aubry S; Pellet-Rostaing S; Fournier Dit Chabert J; Ducki S; Lemaire M
    Bioorg Med Chem Lett; 2007 May; 17(9):2598-602. PubMed ID: 17317166
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Design, synthesis and evaluation of bouvardin, deoxybouvardin and RA-I-XIV pharmacophore analogs.
    Boger DL; Patane MA; Jin Q; Kitos PA
    Bioorg Med Chem; 1994 Feb; 2(2):85-100. PubMed ID: 7922127
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Design and synthesis of potent, highly selective vasopressin hypotensive agonists.
    Stoev S; Cheng LL; Manning M; Wo NC; Szeto HH
    J Pept Sci; 2006 Sep; 12(9):592-604. PubMed ID: 16625682
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cytotoxic bromotyrosine derivatives from a two-sponge association of Jaspis sp. and Poecillastra sp.
    Shinde PB; Lee YM; Dang HT; Hong J; Lee CO; Jung JH
    Bioorg Med Chem Lett; 2008 Dec; 18(24):6414-8. PubMed ID: 18990572
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structures and conformations of metabolites of antitumor cyclic hexapeptides, RA-VII and RA-X.
    Itokawa H; Saitou K; Morita H; Takeya K; Yamada K
    Chem Pharm Bull (Tokyo); 1992 Nov; 40(11):2984-9. PubMed ID: 1477912
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of novel non-peptide CXCR4 antagonists by ligand-based design approach.
    Ueda S; Kato M; Inuki S; Ohno H; Evans B; Wang ZX; Peiper SC; Izumi K; Kodama E; Matsuoka M; Nagasawa H; Oishi S; Fujii N
    Bioorg Med Chem Lett; 2008 Jul; 18(14):4124-9. PubMed ID: 18539453
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthesis and cytotoxicity of aurilide analogs.
    Suenaga K; Kajiwara S; Kuribayashi S; Handa T; Kigoshi H
    Bioorg Med Chem Lett; 2008 Jul; 18(14):3902-5. PubMed ID: 18583129
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.