These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

363 related articles for article (PubMed ID: 1899378)

  • 1. Hepatocyte heterogeneity in uptake and metabolism of malate and related dicarboxylates in perfused rat liver.
    Stoll B; Hüssinger D
    Eur J Biochem; 1991 Jan; 195(1):121-9. PubMed ID: 1899378
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Functional hepatocyte heterogeneity. Vascular 2-oxoglutarate is almost exclusively taken up by perivenous, glutamine-synthetase-containing hepatocytes.
    Stoll B; Hüssinger D
    Eur J Biochem; 1989 May; 181(3):709-16. PubMed ID: 2567236
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hepatocyte heterogeneity in glutamate metabolism and bidirectional transport in perfused rat liver.
    Häussinger D; Stoll B; Stehle T; Gerok W
    Eur J Biochem; 1989 Oct; 185(1):189-95. PubMed ID: 2572417
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hepatocyte heterogeneity in glutamate uptake by isolated perfused rat liver.
    Häussinger D; Gerok W
    Eur J Biochem; 1983 Nov; 136(2):421-5. PubMed ID: 6414814
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hepatocyte heterogeneity in response to icosanoids. The perivenous scavenger cell hypothesis.
    Häussinger D; Stehle T
    Eur J Biochem; 1988 Aug; 175(2):395-403. PubMed ID: 3165342
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of anisotonic cell-volume modulation on glutathione-S-conjugate release, t-butylhydroperoxide metabolism and the pentose-phosphate shunt in perfused rat liver.
    Saha N; Stoll B; Lang F; Häussinger D
    Eur J Biochem; 1992 Oct; 209(1):437-44. PubMed ID: 1396717
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Control of hepatic nitrogen metabolism and glutathione release by cell volume regulatory mechanisms.
    Hüssinger D; Lang F; Bauers K; Gerok W
    Eur J Biochem; 1990 Nov; 193(3):891-8. PubMed ID: 2249700
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Urea synthesis and CO2/HCO3- compartmentation in isolated perfused rat liver.
    Häussinger D
    Biol Chem Hoppe Seyler; 1986 Aug; 367(8):741-50. PubMed ID: 3094554
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Uptake and metabolism of malate in neurons and astrocytes in primary cultures.
    Hertz L; Yu AC; Schousboe A
    J Neurosci Res; 1992 Oct; 33(2):289-96. PubMed ID: 1453491
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of phenylephrine on glutamate and glutamine metabolism in isolated perfused rat liver.
    Häussinger D; Sies H
    Biochem J; 1984 Aug; 221(3):651-8. PubMed ID: 6148074
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The metabolism of malate by cultured rat brain astrocytes.
    McKenna MC; Tildon JT; Couto R; Stevenson JH; Caprio FJ
    Neurochem Res; 1990 Dec; 15(12):1211-20. PubMed ID: 2129052
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hepatocyte heterogeneity in response to extracellular ATP.
    Häussinger D; Stehle T; Gerok W; Tran-Thi TA; Decker K
    Eur J Biochem; 1987 Dec; 169(3):645-50. PubMed ID: 3691513
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hepatocyte heterogeneity in glutamine and ammonia metabolism and the role of an intercellular glutamine cycle during ureogenesis in perfused rat liver.
    Häussinger D
    Eur J Biochem; 1983 Jun; 133(2):269-75. PubMed ID: 6852039
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Benzoate stimulates glutamate release from perfused rat liver.
    Häussinger D; Stehle T; Colombo JP
    Biochem J; 1989 Dec; 264(3):837-43. PubMed ID: 2575901
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regulation of the glycine cleavage system in the isolated perfused rat liver.
    Hampson RK; Taylor MK; Olson MS
    J Biol Chem; 1984 Jan; 259(2):1180-5. PubMed ID: 6420402
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analysis of tricarboxylic acid-cycle metabolism of hepatoma cells by comparison of 14CO2 ratios.
    Kelleher JK; Bryan BM; Mallet RT; Holleran AL; Murphy AN; Fiskum G
    Biochem J; 1987 Sep; 246(3):633-9. PubMed ID: 3120698
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-affinity l-malate transporter DcuE of Actinobacillus succinogenes catalyses reversible exchange of C4-dicarboxylates.
    Rhie MN; Cho YB; Lee YJ; Kim OB
    Environ Microbiol Rep; 2019 Apr; 11(2):129-139. PubMed ID: 30452121
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Regulation of energy metabolism in synaptic terminals and cultured rat brain astrocytes: differences revealed using aminooxyacetate.
    McKenna MC; Tildon JT; Stevenson JH; Boatright R; Huang S
    Dev Neurosci; 1993; 15(3-5):320-9. PubMed ID: 7805585
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cerebral dicarboxylate transport and metabolism studied with isotopically labelled fumarate, malate and malonate.
    Hassel B; Bråthe A; Petersen D
    J Neurochem; 2002 Jul; 82(2):410-9. PubMed ID: 12124442
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Labeled oxidation products from [1-14C], [U-14C] and [16-14C]-palmitate in hepatocytes and mitochondria.
    Chatzidakis C; Otto DA
    Lipids; 1987 Sep; 22(9):620-6. PubMed ID: 3312905
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.