BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

257 related articles for article (PubMed ID: 18995190)

  • 1. Automated segmentation of the liver from 3D CT images using probabilistic atlas and multilevel statistical shape model.
    Okada T; Shimada R; Hori M; Nakamoto M; Chen YW; Nakamura H; Sato Y
    Acad Radiol; 2008 Nov; 15(11):1390-403. PubMed ID: 18995190
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Automated segmentation of the liver from 3D CT images using probabilistic atlas and multi-level statistical shape model.
    Okada T; Shimada R; Sato Y; Hori M; Yokota K; Nakamoto M; Chen YW; Nakamura H; Tamura S
    Med Image Comput Comput Assist Interv; 2007; 10(Pt 1):86-93. PubMed ID: 18051047
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Segmentation of liver and spleen based on computational anatomy models.
    Dong C; Chen YW; Foruzan AH; Lin L; Han XH; Tateyama T; Wu X; Xu G; Jiang H
    Comput Biol Med; 2015 Dec; 67():146-60. PubMed ID: 26551453
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Automated segmentation of the femur and pelvis from 3D CT data of diseased hip using hierarchical statistical shape model of joint structure.
    Yokota F; Okada T; Takao M; Sugano N; Tada Y; Sato Y
    Med Image Comput Comput Assist Interv; 2009; 12(Pt 2):811-8. PubMed ID: 20426186
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multi-organ segmentation based on spatially-divided probabilistic atlas from 3D abdominal CT images.
    Chu C; Oda M; Kitasaka T; Misawa K; Fujiwara M; Hayashi Y; Nimura Y; Rueckert D; Mori K
    Med Image Comput Comput Assist Interv; 2013; 16(Pt 2):165-72. PubMed ID: 24579137
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Automated segmentation and quantification of liver and spleen from CT images using normalized probabilistic atlases and enhancement estimation.
    Linguraru MG; Sandberg JK; Li Z; Shah F; Summers RM
    Med Phys; 2010 Feb; 37(2):771-83. PubMed ID: 20229887
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A shape-guided deformable model with evolutionary algorithm initialization for 3D soft tissue segmentation.
    Heimann T; Münzing S; Meinzer HP; Wolf I
    Inf Process Med Imaging; 2007; 20():1-12. PubMed ID: 17633684
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Automated liver segmentation from a postmortem CT scan based on a statistical shape model.
    Saito A; Yamamoto S; Nawano S; Shimizu A
    Int J Comput Assist Radiol Surg; 2017 Feb; 12(2):205-221. PubMed ID: 27659283
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Atlas-based automated segmentation of spleen and liver using adaptive enhancement estimation.
    Linguraru MG; Sandberg JK; Li Z; Pura JA; Summers RM
    Med Image Comput Comput Assist Interv; 2009; 12(Pt 2):1001-8. PubMed ID: 20426209
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A generalized active shape model for segmentation of liver in low-contrast CT volumes.
    Esfandiarkhani M; Foruzan AH
    Comput Biol Med; 2017 Mar; 82():59-70. PubMed ID: 28161593
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Constructing a probabilistic model for automated liver region segmentation using non-contrast X-ray torso CT images.
    Zhou X; Kitagawa T; Hara T; Fujita H; Zhang X; Yokoyama R; Kondo H; Kanematsu M; Hoshi H
    Med Image Comput Comput Assist Interv; 2006; 9(Pt 2):856-63. PubMed ID: 17354853
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Joint optimization of segmentation and shape prior from level-set-based statistical shape model, and its application to the automated segmentation of abdominal organs.
    Saito A; Nawano S; Shimizu A
    Med Image Anal; 2016 Feb; 28():46-65. PubMed ID: 26716720
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fast automatic 3D liver segmentation based on a three-level AdaBoost-guided active shape model.
    He B; Huang C; Sharp G; Zhou S; Hu Q; Fang C; Fan Y; Jia F
    Med Phys; 2016 May; 43(5):2421. PubMed ID: 27147353
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Liver CT image segmentation using statistical shape model based on statistical and specific information].
    Li C; Zhang J; Feng Q
    Nan Fang Yi Ke Da Xue Xue Bao; 2012 Jan; 32(1):23-7. PubMed ID: 22365998
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Segmentation of neck lymph nodes in CT datasets with stable 3D mass-spring models segmentation of neck lymph nodes.
    Dornheim J; Seim H; Preim B; Hertel I; Strauss G
    Acad Radiol; 2007 Nov; 14(11):1389-99. PubMed ID: 17964462
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 3D liver segmentation using multiple region appearances and graph cuts.
    Peng J; Hu P; Lu F; Peng Z; Kong D; Zhang H
    Med Phys; 2015 Dec; 42(12):6840-52. PubMed ID: 26632041
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Patient-specific probabilistic atlas combining modified distance regularized level set for automatic liver segmentation in CT.
    Wang J; Zu H; Guo H; Bi R; Cheng Y; Tamura S
    Comput Assist Surg (Abingdon); 2019 Oct; 24(sup2):20-26. PubMed ID: 31401890
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Construction of hierarchical multi-organ statistical atlases and their application to multi-organ segmentation from CT images.
    Okada T; Yokota K; Hori M; Nakamoto M; Nakamura H; Sato Y
    Med Image Comput Comput Assist Interv; 2008; 11(Pt 1):502-9. PubMed ID: 18979784
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Liver segmentation using automatically defined patient specific B-spline surface models.
    Song Y; Bulpitt AJ; Brodlie KW
    Med Image Comput Comput Assist Interv; 2009; 12(Pt 2):43-50. PubMed ID: 20426094
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Automatic model-guided segmentation of the human brain ventricular system from CT images.
    Liu J; Huang S; Ihar V; Ambrosius W; Lee LC; Nowinski WL
    Acad Radiol; 2010 Jun; 17(6):718-26. PubMed ID: 20457415
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.