BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

259 related articles for article (PubMed ID: 18995190)

  • 41. Iterative mesh transformation for 3D segmentation of livers with cancers in CT images.
    Lu D; Wu Y; Harris G; Cai W
    Comput Med Imaging Graph; 2015 Jul; 43():1-14. PubMed ID: 25728595
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Semi-automatic level set segmentation of liver tumors combining a spiral-scanning technique with supervised fuzzy pixel classification.
    Smeets D; Loeckx D; Stijnen B; De Dobbelaer B; Vandermeulen D; Suetens P
    Med Image Anal; 2010 Feb; 14(1):13-20. PubMed ID: 19828356
    [TBL] [Abstract][Full Text] [Related]  

  • 43. 3D segmentation of coronary arteries based on advanced mathematical morphology techniques.
    Bouraoui B; Ronse C; Baruthio J; Passat N; Germain P
    Comput Med Imaging Graph; 2010 Jul; 34(5):377-87. PubMed ID: 20153604
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Fully automatic segmentation of the femur from 3D-CT images using primitive shape recognition and statistical shape models.
    Ben Younes L; Nakajima Y; Saito T
    Int J Comput Assist Radiol Surg; 2014 Mar; 9(2):189-96. PubMed ID: 24101434
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Liver segmentation approach using graph cuts and iteratively estimated shape and intensity constrains.
    Afifi A; Nakaguchi T
    Med Image Comput Comput Assist Interv; 2012; 15(Pt 2):395-403. PubMed ID: 23286073
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Automated preoperative planning of femoral stem in total hip arthroplasty from 3D CT data: atlas-based approach and comparative study.
    Otomaru I; Nakamoto M; Kagiyama Y; Takao M; Sugano N; Tomiyama N; Tada Y; Sato Y
    Med Image Anal; 2012 Feb; 16(2):415-26. PubMed ID: 22119490
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Establishing a normative atlas of the human lung: computing the average transformation and atlas construction.
    Li B; Christensen GE; Hoffman EA; McLennan G; Reinhardt JM
    Acad Radiol; 2012 Nov; 19(11):1368-81. PubMed ID: 22951110
    [TBL] [Abstract][Full Text] [Related]  

  • 48. A multiatlas segmentation using graph cuts with applications to liver segmentation in CT scans.
    Platero C; Tobar MC
    Comput Math Methods Med; 2014; 2014():182909. PubMed ID: 25276219
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Automatic rib segmentation and labeling in computed tomography scans using a general framework for detection, recognition and segmentation of objects in volumetric data.
    Staal J; van Ginneken B; Viergever MA
    Med Image Anal; 2007 Feb; 11(1):35-46. PubMed ID: 17126065
    [TBL] [Abstract][Full Text] [Related]  

  • 50. 3D-SIFT-Flow for atlas-based CT liver image segmentation.
    Xu Y; Xu C; Kuang X; Wang H; Chang EI; Huang W; Fan Y
    Med Phys; 2016 May; 43(5):2229. PubMed ID: 27147335
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Three-dimensional semiautomatic liver segmentation method for non-contrast computed tomography based on a correlation map of locoregional histogram and probabilistic atlas.
    Yamaguchi S; Satake K; Yamaji Y; Chen YW; Tanaka HT
    Comput Biol Med; 2014 Dec; 55():79-85. PubMed ID: 25450222
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A Multiorgan Segmentation Model for CT Volumes via Full Convolution-Deconvolution Network.
    Yang Y; Jiang H; Sun Q
    Biomed Res Int; 2017; 2017():6941306. PubMed ID: 29075646
    [TBL] [Abstract][Full Text] [Related]  

  • 53. 3D active shape model segmentation with nonlinear shape priors.
    Kirschner M; Becker M; Wesarg S
    Med Image Comput Comput Assist Interv; 2011; 14(Pt 2):492-9. PubMed ID: 21995065
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Automated threshold-based 3D segmentation versus short-axis planimetry for assessment of global left ventricular function with dual-source MDCT.
    Juergens KU; Seifarth H; Range F; Wienbeck S; Wenker M; Heindel W; Fischbach R
    AJR Am J Roentgenol; 2008 Feb; 190(2):308-14. PubMed ID: 18212214
    [TBL] [Abstract][Full Text] [Related]  

  • 55. CT-based automated planning of acetabular cup for total hip arthroplasty (THA) based on hybrid use of two statistical atlases.
    Kagiyama Y; Otomaru I; Takao M; Sugano N; Nakamoto M; Yokota F; Tomiyama N; Tada Y; Sato Y
    Int J Comput Assist Radiol Surg; 2016 Dec; 11(12):2253-2271. PubMed ID: 27344334
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Vessel segmentation for ablation treatment planning and simulation.
    Alhonnoro T; Pollari M; Lilja M; Flanagan R; Kainz B; Muehl J; Mayrhauser U; Portugaller H; Stiegler P; Tscheliessnigg K
    Med Image Comput Comput Assist Interv; 2010; 13(Pt 1):45-52. PubMed ID: 20879213
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A study on graphical model structure for representing statistical shape model of point distribution model.
    Sawada Y; Hontani H
    Med Image Comput Comput Assist Interv; 2012; 15(Pt 2):470-7. PubMed ID: 23286082
    [TBL] [Abstract][Full Text] [Related]  

  • 58. 3-D graph cut segmentation with Riemannian metrics to avoid the shrinking problem.
    Hanaoka S; Fritscher K; Welk M; Nemoto M; Masutani Y; Hayashi N; Ohtomo K; Schubert R
    Med Image Comput Comput Assist Interv; 2011; 14(Pt 3):554-61. PubMed ID: 22003743
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Automatic liver segmentation from CT scans based on a statistical shape model.
    Zhang X; Tian J; Deng K; Wu Y; Li X
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():5351-4. PubMed ID: 21096258
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Estimation of attachment regions of hip muscles in CT image using muscle attachment probabilistic atlas constructed from measurements in eight cadavers.
    Fukuda N; Otake Y; Takao M; Yokota F; Ogawa T; Uemura K; Nakaya R; Tamura K; Grupp RB; Farvardin A; Armand M; Sugano N; Sato Y
    Int J Comput Assist Radiol Surg; 2017 May; 12(5):733-742. PubMed ID: 28188484
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.