BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 18995858)

  • 1. On the applicability of bovine morsellized cortico-cancellous bone as a substitute for human morsellized cortico-cancellous bone for in vitro mechanical testing.
    Lunde KB; Foss OA; Skallerud B
    J Biomech; 2008 Dec; 41(16):3469-74. PubMed ID: 18995858
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Constitutive models for constrained compression of unimpacted and impacted human morselized bone grafts.
    Lunde KB; Foss OA; Fosse L; Skallerud B
    J Biomech Eng; 2008 Dec; 130(6):061014. PubMed ID: 19045543
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of water and fat content on compressive stiffness properties of impacted morsellized bone: an experimental ex vivo study on bone pellets.
    Fosse L; Rønningen H; Benum P; Sandven RB
    Acta Orthop; 2006 Feb; 77(1):15-22. PubMed ID: 16534697
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Constitutive models for impacted morsellised cortico-cancellous bone.
    Phillips A; Pankaj P; May F; Taylor K; Howie C; Usmani A
    Biomaterials; 2006 Mar; 27(9):2162-70. PubMed ID: 16309740
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The modified cam clay model for constrained compression of human morsellised bone: effects of porosity on the mechanical behaviour.
    Lunde KB; Skallerud B
    J Mech Behav Biomed Mater; 2009 Jan; 2(1):43-50. PubMed ID: 19627806
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Impacted morselized cancellous bone: mechanical effects of defatting and augmentation with fine hydroxyapatite particles.
    Voor MJ; White JE; Grieshaber JE; Malkani AL; Ullrich CR
    J Biomech; 2004 Aug; 37(8):1233-9. PubMed ID: 15212929
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Post-yield relaxation behavior of bovine cancellous bone.
    Burgers TA; Lakes RS; García-Rodríguez S; Piller GR; Ploeg HL
    J Biomech; 2009 Dec; 42(16):2728-33. PubMed ID: 19765712
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stiffness and compactness of morselized grafts during impaction: an in vitro study with human femoral heads.
    Bavadekar A; Cornu O; Godts B; Delloye C; Van Tomme J; Banse X
    Acta Orthop Scand; 2001 Oct; 72(5):470-6. PubMed ID: 11728073
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The dependence between the strength and stiffness of cancellous and cortical bone tissue for tension and compression: extension of a unifying principle.
    Yeni YN; Dong XN; Fyhrie DP; Les CM
    Biomed Mater Eng; 2004; 14(3):303-10. PubMed ID: 15299242
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Factors affecting stiffness properties in impacted morsellized bone used in revision hip surgery: an experimental in vitro study.
    Fosse L; Rønningen H; Benum P; Lydersen S; Sandven RB
    J Biomed Mater Res A; 2006 Aug; 78(2):423-31. PubMed ID: 16739109
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Calcium phosphate cement composites in revision hip arthroplasty.
    Speirs AD; Oxland TR; Masri BA; Poursartip A; Duncan CP
    Biomaterials; 2005 Dec; 26(35):7310-8. PubMed ID: 16023190
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biomechanical analysis of a synthetic, biodegradable impaction graft substitute.
    Lutton C; Wheatley D; Wilson L; Van der Velden W; Crawford R; Goss B
    J Biomed Mater Res A; 2010 Nov; 95(2):381-7. PubMed ID: 20632400
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Compressive mechanical properties of demineralized and deproteinized cancellous bone.
    Chen PY; McKittrick J
    J Mech Behav Biomed Mater; 2011 Oct; 4(7):961-73. PubMed ID: 21783106
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Minimizing specimen length in elastic testing of end-constrained cancellous bone.
    Lievers WB; Waldman SD; Pilkey AK
    J Mech Behav Biomed Mater; 2010 Jan; 3(1):22-30. PubMed ID: 19878899
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Investigation into the material properties of beech wood and cortical bone.
    Murdoch AH; Mathias KJ; Shepherd DE
    Biomed Mater Eng; 2004; 14(1):1-4. PubMed ID: 14757947
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison of the structure and mechanical properties of bovine femur bone and antler of the North American elk (Cervus elaphus canadensis).
    Chen PY; Stokes AG; McKittrick J
    Acta Biomater; 2009 Feb; 5(2):693-706. PubMed ID: 18951859
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 3D analysis from micro-MRI during in situ compression on cancellous bone.
    Benoit A; Guérard S; Gillet B; Guillot G; Hild F; Mitton D; Périé JN; Roux S
    J Biomech; 2009 Oct; 42(14):2381-6. PubMed ID: 19643419
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanical testing of cancellous bone from the femoral head: experimental errors due to off-axis measurements.
    Ohman C; Baleani M; Perilli E; Dall'Ara E; Tassani S; Baruffaldi F; Viceconti M
    J Biomech; 2007; 40(11):2426-33. PubMed ID: 17257604
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Anisotropy in the compressive mechanical properties of bovine cortical bone and the mineral and protein constituents.
    Novitskaya E; Chen PY; Lee S; Castro-Ceseña A; Hirata G; Lubarda VA; McKittrick J
    Acta Biomater; 2011 Aug; 7(8):3170-7. PubMed ID: 21571104
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Anisotropy of the fatigue behaviour of cancellous bone.
    Dendorfer S; Maier HJ; Taylor D; Hammer J
    J Biomech; 2008; 41(3):636-41. PubMed ID: 18005974
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.