BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 18996552)

  • 1. Chitosan and metal salt coagulant impacts on Cryptosporidium and microsphere removal by filtration.
    Brown TJ; Emelko MB
    Water Res; 2009 Feb; 43(2):331-8. PubMed ID: 18996552
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Removals of cryptosporidium parvum oocysts and cryptosporidium-sized polystyrene microspheres from swimming pool water by diatomaceous earth filtration and perlite-sand filtration.
    Lu P; Amburgey JE; Hill VR; Murphy JL; Schneeberger CL; Arrowood MJ; Yuan T
    J Water Health; 2017 Jun; 15(3):374-384. PubMed ID: 28598342
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A pilot-scale study of Cryptosporidium-sized microsphere removals from swimming pools via sand filtration.
    Lu P; Amburgey JE
    J Water Health; 2016 Feb; 14(1):109-20. PubMed ID: 26837835
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation of microspheres as surrogates for Cryptosporidium parvum oocysts in filtration experiments.
    Dai X; Hozalski RM
    Environ Sci Technol; 2003 Mar; 37(5):1037-42. PubMed ID: 12666938
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of organic carbon loading, sediment associated metal oxide content and sediment grain size distributions upon Cryptosporidium parvum removal during riverbank filtration operations, Sonoma County, CA.
    Metge DW; Harvey RW; Aiken GR; Anders R; Lincoln G; Jasperse J
    Water Res; 2010 Feb; 44(4):1126-37. PubMed ID: 20116824
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of sediment-associated extractable metals, degree of sediment grain sorting, and dissolved organic carbon upon Cryptosporidium parvum removal and transport within riverbank filtration sediments, Sonoma County, California.
    Metge DW; Harvey RW; Aiken GR; Anders R; Lincoln G; Jasperse J; Hill MC
    Environ Sci Technol; 2011 Jul; 45(13):5587-95. PubMed ID: 21634424
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interaction between Cryptosporidium oocysts and water treatment coagulants.
    Bustamante HA; Shanker SR; Pashley RM; Karaman ME
    Water Res; 2001 Sep; 35(13):3179-89. PubMed ID: 11487115
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biotin- and glycoprotein-coated microspheres: potential surrogates for studying filtration of cryptosporidium parvum in porous media.
    Pang L; Nowostawska U; Weaver L; Hoffman G; Karmacharya A; Skinner A; Karki N
    Environ Sci Technol; 2012 Nov; 46(21):11779-87. PubMed ID: 22978441
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Removal of viable and inactivated Cryptosporidium by dual- and tri-media filtration.
    Emelko MB
    Water Res; 2003 Jul; 37(12):2998-3008. PubMed ID: 12767303
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Removal and fate of Cryptosporidium in dissolved air drinking water treatment plants.
    Edzwald JK; Tobiason JE; Dunn H; Kaminski G; Galant P
    Water Sci Technol; 2001; 43(8):51-7. PubMed ID: 11394279
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of transport and attachment behaviors of Cryptosporidium parvum oocysts and oocyst-sized microspheres being advected through three minerologically different granular porous media.
    Mohanram A; Ray C; Harvey RW; Metge DW; Ryan JN; Chorover J; Eberl DD
    Water Res; 2010 Oct; 44(18):5334-44. PubMed ID: 20637489
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation of Cryptosporidium parvum oocyst recovery efficiencies from various filtration cartridges by electrochemiluminescence assays.
    Lee Y; Gomez LL; McAuliffe IT; Tsang VC
    Lett Appl Microbiol; 2004; 39(2):156-62. PubMed ID: 15242454
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of NOM and biofilm on the removal of Cryptosporidium parvum oocysts in rapid filters.
    Dai X; Hozalski RM
    Water Res; 2002 Aug; 36(14):3523-32. PubMed ID: 12230198
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Removal of model viruses, E. coli and Cryptosporidium oocysts from surface water by zirconium and chitosan coagulants.
    Christensen E; Nilsen V; Håkonsen T; Heistad A; Gantzer C; Robertson LJ; Myrmel M
    J Water Health; 2017 Oct; 15(5):695-705. PubMed ID: 29040073
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Particle count and size alteration for membrane fouling reduction in non-conventional water filtration.
    Adin A
    Water Sci Technol; 2004; 50(12):273-8. PubMed ID: 15686031
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transport of Cryptosporidium oocysts in porous media: role of straining and physicochemical filtration.
    Tufenkji N; Miller GF; Ryan JN; Harvey RW; Elimelech M
    Environ Sci Technol; 2004 Nov; 38(22):5932-8. PubMed ID: 15573591
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Point-of-Use Removal of Cryptosporidium parvum from Water: Independent Effects of Disinfection by Silver Nanoparticles and Silver Ions and by Physical Filtration in Ceramic Porous Media.
    Abebe LS; Su YH; Guerrant RL; Swami NS; Smith JA
    Environ Sci Technol; 2015 Nov; 49(21):12958-67. PubMed ID: 26398590
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spatial distributions of Cryptosporidium oocysts in porous media: evidence for dual mode deposition.
    Tufenkji N; Elimelech M
    Environ Sci Technol; 2005 May; 39(10):3620-9. PubMed ID: 15952366
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optimisation and improvement of in-line filtration performance in water treatment for a typical low turbidity source water.
    Wang D; Kundert KL; Emelko MB
    Environ Technol; 2020 Jan; 41(2):181-190. PubMed ID: 29932838
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transport and fate of Cryptosporidium parvum oocysts in intermittent sand filters.
    Logan AJ; Stevik TK; Siegrist RL; Rønn RM
    Water Res; 2001 Dec; 35(18):4359-69. PubMed ID: 11763038
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.