These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
230 related articles for article (PubMed ID: 18997038)
1. Computer-assisted interpretation of planar whole-body bone scans. Sadik M; Hamadeh I; Nordblom P; Suurkula M; Höglund P; Ohlsson M; Edenbrandt L J Nucl Med; 2008 Dec; 49(12):1958-65. PubMed ID: 18997038 [TBL] [Abstract][Full Text] [Related]
2. A new computer-based decision-support system for the interpretation of bone scans. Sadik M; Jakobsson D; Olofsson F; Ohlsson M; Suurkula M; Edenbrandt L Nucl Med Commun; 2006 May; 27(5):417-23. PubMed ID: 16609352 [TBL] [Abstract][Full Text] [Related]
3. Improved classifications of planar whole-body bone scans using a computer-assisted diagnosis system: a multicenter, multiple-reader, multiple-case study. Sadik M; Suurkula M; Höglund P; Järund A; Edenbrandt L J Nucl Med; 2009 Mar; 50(3):368-75. PubMed ID: 19223423 [TBL] [Abstract][Full Text] [Related]
4. Development of a computer-aided diagnostic scheme for detection of interval changes in successive whole-body bone scans. Shiraishi J; Li Q; Appelbaum D; Pu Y; Doi K Med Phys; 2007 Jan; 34(1):25-36. PubMed ID: 17278486 [TBL] [Abstract][Full Text] [Related]
5. Investigation of computer-aided diagnosis system for bone scans: a retrospective analysis in 406 patients. Tokuda O; Harada Y; Ohishi Y; Matsunaga N; Edenbrandt L Ann Nucl Med; 2014 May; 28(4):329-39. PubMed ID: 24573796 [TBL] [Abstract][Full Text] [Related]
6. Clinical utility of temporal subtraction images in successive whole-body bone scans: evaluation in a prospective clinical study. Shiraishi J; Appelbaum D; Pu Y; Engelmann R; Li Q; Doi K J Digit Imaging; 2011 Aug; 24(4):680-7. PubMed ID: 20730471 [TBL] [Abstract][Full Text] [Related]
7. Spectral parametric segmentation of contrast-enhanced dual-energy CT to detect bone metastasis: feasibility sensitivity study using whole-body bone scintigraphy. Lee YH; Kim S; Lim D; Suh JS; Song HT Acta Radiol; 2015 Apr; 56(4):458-64. PubMed ID: 24714734 [TBL] [Abstract][Full Text] [Related]
8. Single photon emission computed tomography (SPECT) and SPECT/low-dose computerized tomography did not increase sensitivity or specificity compared to planar bone scintigraphy for detection of bone metastases in advanced breast cancer. Haraldsen A; Bluhme H; Røhl L; Pedersen EM; Jensen AB; Hansen EB; Nellemann H; Rasmussen F; Morsing A Clin Physiol Funct Imaging; 2016 Jan; 36(1):40-6. PubMed ID: 25257661 [TBL] [Abstract][Full Text] [Related]
9. Bone tumor segmentation on bone scans using context information and random forests. Chu G; Lo P; Ramakrishna B; Kim H; Morris D; Goldin J; Brown M Med Image Comput Comput Assist Interv; 2014; 17(Pt 1):601-8. PubMed ID: 25333168 [TBL] [Abstract][Full Text] [Related]
10. Quality of planar whole-body bone scan interpretations--a nationwide survey. Sadik M; Suurkula M; Höglund P; Järund A; Edenbrandt L Eur J Nucl Med Mol Imaging; 2008 Aug; 35(8):1464-72. PubMed ID: 18373092 [TBL] [Abstract][Full Text] [Related]
11. Comparison of whole-body MRI and bone scintigraphy in the detection of bone metastases in renal cancer. Sohaib SA; Cook G; Allen SD; Hughes M; Eisen T; Gore M Br J Radiol; 2009 Aug; 82(980):632-9. PubMed ID: 19221182 [TBL] [Abstract][Full Text] [Related]
12. The value of simultaneous co-registration of 99mTc- MDP and 131Iodine in metastatic differentiated thyroid carcinoma. Kotb MH; Omar W; El-Maghraby T; El-Bedwihy M; El-Tawdy M; Mustafa H; Al-Nahhas A Nucl Med Rev Cent East Eur; 2007; 10(2):98-105. PubMed ID: 18228214 [TBL] [Abstract][Full Text] [Related]
13. Whole-body magnetic resonance imaging in the detection of skeletal metastases in patients with prostate cancer. Venkitaraman R; Cook GJ; Dearnaley DP; Parker CC; Khoo V; Eeles R; Huddart RA; Horwich A; Sohaib SA J Med Imaging Radiat Oncol; 2009 Jun; 53(3):241-7. PubMed ID: 19624290 [TBL] [Abstract][Full Text] [Related]
14. Application of artificial neural network algorithm to detection of parathyroid adenoma. Stefaniak B; Cholewiński W; Tarkowska A Nucl Med Rev Cent East Eur; 2003; 6(2):111-7. PubMed ID: 14737724 [TBL] [Abstract][Full Text] [Related]
15. Automated interpretation of PET/CT images in patients with lung cancer. Gutte H; Jakobsson D; Olofsson F; Ohlsson M; Valind S; Loft A; Edenbrandt L; Kjaer A Nucl Med Commun; 2007 Feb; 28(2):79-84. PubMed ID: 17198346 [TBL] [Abstract][Full Text] [Related]
16. [Diagnostic value of whole-body MRI and bone scintigraphy in the detection of osseous metastases in patients with breast cancer--A Prospective Double-Blinded Study at two Hospital Centers]. Ohlmann-Knafo S; Kirschbaum M; Fenzl G; Pickuth D Rofo; 2009 Mar; 181(3):255-63. PubMed ID: 19229791 [TBL] [Abstract][Full Text] [Related]
17. Comparing whole body (18)F-2-deoxyglucose positron emission tomography and technetium-99m methylene diphosphonate bone scan to detect bone metastases in patients with breast cancer. Yang SN; Liang JA; Lin FJ; Kao CH; Lin CC; Lee CC J Cancer Res Clin Oncol; 2002 Jun; 128(6):325-8. PubMed ID: 12073051 [TBL] [Abstract][Full Text] [Related]
18. Quantitative measurements of bone remodeling using 99mTc-methylene diphosphonate bone scans and blood sampling. Moore AE; Blake GM; Fogelman I J Nucl Med; 2008 Mar; 49(3):375-82. PubMed ID: 18287266 [TBL] [Abstract][Full Text] [Related]
19. SPECT imaging in the diagnosis of pulmonary embolism: automated detection of match and mismatch defects by means of image-processing techniques. Reinartz P; Kaiser HJ; Wildberger JE; Gordji C; Nowak B; Buell U J Nucl Med; 2006 Jun; 47(6):968-73. PubMed ID: 16741306 [TBL] [Abstract][Full Text] [Related]
20. Neural network ensemble-based computer-aided diagnosis for differentiation of lung nodules on CT images: clinical evaluation. Chen H; Xu Y; Ma Y; Ma B Acad Radiol; 2010 May; 17(5):595-602. PubMed ID: 20167513 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]