BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

248 related articles for article (PubMed ID: 18997092)

  • 1. Nonessential role of beta3 and beta5 integrin subunits for efficient clearance of cellular debris after light-induced photoreceptor degeneration.
    Joly S; Samardzija M; Wenzel A; Thiersch M; Grimm C
    Invest Ophthalmol Vis Sci; 2009 Mar; 50(3):1423-32. PubMed ID: 18997092
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Activation of microglia and chemokines in light-induced retinal degeneration.
    Zhang C; Shen JK; Lam TT; Zeng HY; Chiang SK; Yang F; Tso MO
    Mol Vis; 2005 Oct; 11():887-95. PubMed ID: 16270028
    [TBL] [Abstract][Full Text] [Related]  

  • 3. NF-kappaB activation in light-induced retinal degeneration in a mouse model.
    Wu T; Chen Y; Chiang SK; Tso MO
    Invest Ophthalmol Vis Sci; 2002 Sep; 43(9):2834-40. PubMed ID: 12202499
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Caspase-1 ablation protects photoreceptors in a model of autosomal dominant retinitis pigmentosa.
    Samardzija M; Wenzel A; Thiersch M; Frigg R; Remé C; Grimm C
    Invest Ophthalmol Vis Sci; 2006 Dec; 47(12):5181-90. PubMed ID: 17122101
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Increased susceptibility to light damage in an arrestin knockout mouse model of Oguchi disease (stationary night blindness).
    Chen J; Simon MI; Matthes MT; Yasumura D; LaVail MM
    Invest Ophthalmol Vis Sci; 1999 Nov; 40(12):2978-82. PubMed ID: 10549660
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Gene expression in the mouse retina: the effect of damaging light.
    Grimm C; Wenzel A; Hafezi F; Remé CE
    Mol Vis; 2000 Dec; 6():252-60. PubMed ID: 11134582
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Neuroprotective effects of naloxone against light-induced photoreceptor degeneration through inhibiting retinal microglial activation.
    Ni YQ; Xu GZ; Hu WZ; Shi L; Qin YW; Da CD
    Invest Ophthalmol Vis Sci; 2008 Jun; 49(6):2589-98. PubMed ID: 18515588
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Increased expression of ceruloplasmin in the retina following photic injury.
    Chen L; Dentchev T; Wong R; Hahn P; Wen R; Bennett J; Dunaief JL
    Mol Vis; 2003 Apr; 9():151-8. PubMed ID: 12724641
    [TBL] [Abstract][Full Text] [Related]  

  • 9. DNA damage and repair in light-induced photoreceptor degeneration.
    Gordon WC; Casey DM; Lukiw WJ; Bazan NG
    Invest Ophthalmol Vis Sci; 2002 Nov; 43(11):3511-21. PubMed ID: 12407163
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Light-Induced photoreceptor degeneration in the mouse involves activation of the small GTPase Rac1.
    Belmonte MA; Santos MF; Kihara AH; Yan CY; Hamassaki DE
    Invest Ophthalmol Vis Sci; 2006 Mar; 47(3):1193-200. PubMed ID: 16505058
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rhodopsin-mediated blue-light damage to the rat retina: effect of photoreversal of bleaching.
    Grimm C; Wenzel A; Williams T; Rol P; Hafezi F; Remé C
    Invest Ophthalmol Vis Sci; 2001 Feb; 42(2):497-505. PubMed ID: 11157889
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Eliminating complement factor D reduces photoreceptor susceptibility to light-induced damage.
    Rohrer B; Guo Y; Kunchithapautham K; Gilkeson GS
    Invest Ophthalmol Vis Sci; 2007 Nov; 48(11):5282-9. PubMed ID: 17962484
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Neuroprotection of photoreceptors by minocycline in light-induced retinal degeneration.
    Zhang C; Lei B; Lam TT; Yang F; Sinha D; Tso MO
    Invest Ophthalmol Vis Sci; 2004 Aug; 45(8):2753-9. PubMed ID: 15277501
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Brief exposure to damaging light causes focal recruitment of macrophages, and long-term destabilization of photoreceptors in the albino rat retina.
    Rutar M; Provis JM; Valter K
    Curr Eye Res; 2010 Jul; 35(7):631-43. PubMed ID: 20597649
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular mechanisms of light-induced photoreceptor apoptosis and neuroprotection for retinal degeneration.
    Wenzel A; Grimm C; Samardzija M; Remé CE
    Prog Retin Eye Res; 2005 Mar; 24(2):275-306. PubMed ID: 15610977
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prevention of photoreceptor apoptosis by activation of the glucocorticoid receptor.
    Wenzel A; Grimm C; Seeliger MW; Jaissle G; Hafezi F; Kretschmer R; Zrenner E; Remé CE
    Invest Ophthalmol Vis Sci; 2001 Jun; 42(7):1653-9. PubMed ID: 11381074
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biphasic photoreceptor degeneration induced by light in a T17M rhodopsin mouse model of cone bystander damage.
    Krebs MP; White DA; Kaushal S
    Invest Ophthalmol Vis Sci; 2009 Jun; 50(6):2956-65. PubMed ID: 19136713
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Neuroprotection in the juvenile rat model of light-induced retinopathy: evidence suggesting a role for FGF-2 and CNTF.
    Joly S; Pernet V; Chemtob S; Di Polo A; Lachapelle P
    Invest Ophthalmol Vis Sci; 2007 May; 48(5):2311-20. PubMed ID: 17460296
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of sequential events and factors associated with microglial activation, migration, and cytotoxicity in retinal degeneration in rd mice.
    Zeng HY; Zhu XA; Zhang C; Yang LP; Wu LM; Tso MO
    Invest Ophthalmol Vis Sci; 2005 Aug; 46(8):2992-9. PubMed ID: 16043876
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A direct test of potential roles for beta3 and beta5 integrins in growth and metastasis of murine mammary carcinomas.
    Taverna D; Crowley D; Connolly M; Bronson RT; Hynes RO
    Cancer Res; 2005 Nov; 65(22):10324-9. PubMed ID: 16288021
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.