These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 18997275)

  • 1. Real-time odor discrimination using a bioelectronic sensor array based on the insect electroantennogram.
    Myrick AJ; Park KC; Hetling JR; Baker TC
    Bioinspir Biomim; 2008 Dec; 3(4):046006. PubMed ID: 18997275
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Locating a compact odor source using a four-channel insect electroantennogram sensor.
    Myrick AJ; Baker TC
    Bioinspir Biomim; 2011 Mar; 6(1):016002. PubMed ID: 21160116
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Odor discrimination using insect electroantennogram responses from an insect antennal array.
    Park KC; Ochieng SA; Zhu J; Baker TC
    Chem Senses; 2002 May; 27(4):343-52. PubMed ID: 12006374
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Insect antenna-based biosensors for in situ detection of volatiles.
    Schott M; Wehrenfennig C; Gasch T; Vilcinskas A
    Adv Biochem Eng Biotechnol; 2013; 136():101-22. PubMed ID: 23756603
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Using insect electroantennogram sensors on autonomous robots for olfactory searches.
    Martinez D; Arhidi L; Demondion E; Masson JB; Lucas P
    J Vis Exp; 2014 Aug; (90):e51704. PubMed ID: 25145980
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Classifying continuous, real-time e-nose sensor data using a bio-inspired spiking network modelled on the insect olfactory system.
    Diamond A; Schmuker M; Berna AZ; Trowell S; Nowotny T
    Bioinspir Biomim; 2016 Feb; 11(2):026002. PubMed ID: 26891474
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Olfaction in dragonflies: electrophysiological evidence.
    Rebora M; Salerno G; Piersanti S; Dell'otto A; Gaino E
    J Insect Physiol; 2012 Feb; 58(2):270-7. PubMed ID: 22154954
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Towards a high-resolution flow camera using artificial hair sensor arrays for flow pattern observations.
    Dagamseh AM; Wiegerink RJ; Lammerink TS; Krijnen GJ
    Bioinspir Biomim; 2012 Dec; 7(4):046009. PubMed ID: 22954888
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A composite sensor array impedentiometric electronic tongue Part II. Discrimination of basic tastes.
    Pioggia G; Di Francesco F; Marchetti A; Ferro M; Leardi R; Ahluwalia A
    Biosens Bioelectron; 2007 May; 22(11):2624-8. PubMed ID: 17169548
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Using insect sniffing devices for detection.
    Rains GC; Tomberlin JK; Kulasiri D
    Trends Biotechnol; 2008 Jun; 26(6):288-94. PubMed ID: 18375006
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Insect olfaction: receptors, signal transduction, and behavior.
    Sato K; Touhara K
    Results Probl Cell Differ; 2009; 47():121-38. PubMed ID: 19083129
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electroantennogram reveals a strong correlation between the passion of honeybee and the properties of the volatile.
    Zhao J; Li Z; Zhao Z; Yang Y; Yan S
    Brain Behav; 2020 Jun; 10(6):e01603. PubMed ID: 32270603
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A model for μ-biomimetic thermal infrared sensors based on the infrared receptors of Melanophila acuminata.
    Siebke G; Holik P; Schmitz S; Schmitz H; Lacher M; Steltenkamp S
    Bioinspir Biomim; 2014 Sep; 9(3):036012. PubMed ID: 24762777
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Drosophila olfactory receptors as classifiers for volatiles from disparate real world applications.
    Nowotny T; de Bruyne M; Berna AZ; Warr CG; Trowell SC
    Bioinspir Biomim; 2014 Oct; 9(4):046007. PubMed ID: 25313522
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Real-time monitoring of the strand displacement amplification (SDA) of human cytomegalovirus by a new SDA-piezoelectric DNA sensor system.
    Chen Q; Bian Z; Chen M; Hua X; Yao C; Xia H; Kuang H; Zhang X; Huang J; Cai G; Fu W
    Biosens Bioelectron; 2009 Aug; 24(12):3412-8. PubMed ID: 19576755
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Objective display and discrimination of floral odors from Amorphophallus titanum, bloomed on different dates and at different locations, using an electronic nose.
    Fujioka K; Shirasu M; Manome Y; Ito N; Kakishima S; Minami T; Tominaga T; Shimozono F; Iwamoto T; Ikeda K; Yamamoto K; Murata J; Tomizawa Y
    Sensors (Basel); 2012; 12(2):2152-61. PubMed ID: 22438757
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Using hardware models to quantify sensory data acquisition across the rat vibrissal array.
    Gopal V; Hartmann MJ
    Bioinspir Biomim; 2007 Dec; 2(4):S135-45. PubMed ID: 18037723
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A novel electronic nose based on porous In2O3 microtubes sensor array for the discrimination of VOCs.
    Yang W; Wan P; Jia M; Hu J; Guan Y; Feng L
    Biosens Bioelectron; 2015 Feb; 64():547-53. PubMed ID: 25310487
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Insects did it first: a micropatterned adhesive tape for robotic applications.
    Gorb SN; Sinha M; Peressadko A; Daltorio KA; Quinn RD
    Bioinspir Biomim; 2007 Dec; 2(4):S117-25. PubMed ID: 18037721
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.