These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
107 related articles for article (PubMed ID: 18997410)
1. Asymmetric synthesis of (S)-alpha-methylbenzylamine by recombinant Escherichia coli co-expressing omega-transaminase and acetolactate synthase. Yun H; Kim BG Biosci Biotechnol Biochem; 2008 Nov; 72(11):3030-3. PubMed ID: 18997410 [TBL] [Abstract][Full Text] [Related]
2. Kinetic modeling of omega-transamination for enzymatic kinetic resolution of alpha-methylbenzylamine. Shin JS; Kim BG Biotechnol Bioeng; 1998 Dec; 60(5):534-40. PubMed ID: 10099461 [TBL] [Abstract][Full Text] [Related]
3. Enzymatic synthesis of chiral γ-amino acids using ω-transaminase. Shon M; Shanmugavel R; Shin G; Mathew S; Lee SH; Yun H Chem Commun (Camb); 2014 Oct; 50(84):12680-3. PubMed ID: 25207334 [TBL] [Abstract][Full Text] [Related]
4. Necessary and sufficient conditions for the asymmetric synthesis of chiral amines using ω-aminotransferases. Seo JH; Kyung D; Joo K; Lee J; Kim BG Biotechnol Bioeng; 2011 Feb; 108(2):253-63. PubMed ID: 20824676 [TBL] [Abstract][Full Text] [Related]
5. Engineering of a novel biochemical pathway for the biosynthesis of L-2-aminobutyric acid in Escherichia coli K12. Fotheringham IG; Grinter N; Pantaleone DP; Senkpeil RF; Taylor PP Bioorg Med Chem; 1999 Oct; 7(10):2209-13. PubMed ID: 10579528 [TBL] [Abstract][Full Text] [Related]
6. Supported liquid membrane as a novel tool for driving the equilibrium of ω-transaminase catalyzed asymmetric synthesis. Rehn G; Adlercreutz P; Grey C J Biotechnol; 2014 Jun; 179():50-5. PubMed ID: 24675224 [TBL] [Abstract][Full Text] [Related]
8. Improvement of whole-cell transamination with Saccharomyces cerevisiae using metabolic engineering and cell pre-adaptation. Weber N; Gorwa-Grauslund M; Carlquist M Microb Cell Fact; 2017 Jan; 16(1):3. PubMed ID: 28049528 [TBL] [Abstract][Full Text] [Related]
9. Simultaneous synthesis of enantiomerically pure (S)-amino acids and (R)-amines using coupled transaminase reactions. Cho BK; Cho HJ; Park SH; Yun H; Kim BG Biotechnol Bioeng; 2003 Mar; 81(7):783-9. PubMed ID: 12557311 [TBL] [Abstract][Full Text] [Related]
10. Simultaneous synthesis of enantiomerically pure (R)-1-phenylethanol and (R)-alpha-methylbenzylamine from racemic alpha-methylbenzylamine using omega-transaminase/alcohol dehydrogenase/glucose dehydrogenase coupling reaction. Yun H; Yang YH; Cho BK; Hwang BY; Kim BG Biotechnol Lett; 2003 May; 25(10):809-14. PubMed ID: 12882012 [TBL] [Abstract][Full Text] [Related]
11. Enantioselective biotransformation of sterically hindered amine substrates by the fungus Stemphylium lycopersici. Queiroz MSR; Pinheiro LZ; Sutili FK; de Souza PM; Seldin L; Muzitano MF; de Souza ROMA; Guimarães DO; Leal ICR J Appl Microbiol; 2018 May; 124(5):1107-1121. PubMed ID: 29292556 [TBL] [Abstract][Full Text] [Related]
12. Asymmetric synthesis of chiral amines with omega-transaminase. Shin JS; Kim BG Biotechnol Bioeng; 1999 Oct; 65(2):206-11. PubMed ID: 10458742 [TBL] [Abstract][Full Text] [Related]
13. Creation of ( Voss M; Xiang C; Esque J; Nobili A; Menke MJ; André I; Höhne M; Bornscheuer UT ACS Chem Biol; 2020 Feb; 15(2):416-424. PubMed ID: 31990173 [TBL] [Abstract][Full Text] [Related]
14. Co-immobilized Whole Cells with ω-Transaminase and Ketoreductase Activities for Continuous-Flow Cascade Reactions. Nagy-Győr L; Abaházi E; Bódai V; Sátorhelyi P; Erdélyi B; Balogh-Weiser D; Paizs C; Hornyánszky G; Poppe L Chembiochem; 2018 Sep; 19(17):1845-1848. PubMed ID: 29944204 [TBL] [Abstract][Full Text] [Related]
15. Creation of a robust and R-selective ω-amine transaminase for the asymmetric synthesis of sitagliptin intermediate on a kilogram scale. Cheng F; Chen XL; Li MY; Zhang XJ; Jia DX; Wang YJ; Liu ZQ; Zheng YG Enzyme Microb Technol; 2020 Nov; 141():109655. PubMed ID: 33051014 [TBL] [Abstract][Full Text] [Related]
16. Continuous flow synthesis of chiral amines in organic solvents: immobilization of E. coli cells containing both ω-transaminase and PLP. Andrade LH; Kroutil W; Jamison TF Org Lett; 2014 Dec; 16(23):6092-5. PubMed ID: 25394227 [TBL] [Abstract][Full Text] [Related]
17. Immobilization of Escherichia coli containing ω-transaminase activity in LentiKats®. Cárdenas-Fernández M; Neto W; López C; Álvaro G; Tufvesson P; Woodley JM Biotechnol Prog; 2012; 28(3):693-8. PubMed ID: 22467646 [TBL] [Abstract][Full Text] [Related]
18. Designing of a Cofactor Self-Sufficient Whole-Cell Biocatalyst System for Production of 1,2-Amino Alcohols from Epoxides. Liu S; Zhang X; Liu F; Xu M; Yang T; Long M; Zhou J; Osire T; Yang S; Rao Z ACS Synth Biol; 2019 Apr; 8(4):734-743. PubMed ID: 30840437 [TBL] [Abstract][Full Text] [Related]
19. ω-Transaminase from Ochrobactrum anthropi is devoid of substrate and product inhibitions. Park ES; Shin JS Appl Environ Microbiol; 2013 Jul; 79(13):4141-4. PubMed ID: 23584786 [TBL] [Abstract][Full Text] [Related]
20. Diaminopelargonic acid transaminase from Psychrobacter cryohalolentis is active towards (S)-(-)-1-phenylethylamine, aldehydes and α-diketones. Bezsudnova EY; Stekhanova TN; Popinako AV; Rakitina TV; Nikolaeva AY; Boyko KM; Popov VO Appl Microbiol Biotechnol; 2018 Nov; 102(22):9621-9633. PubMed ID: 30178202 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]