These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 18997964)

  • 1. Molecularly imprinted cavities template the macrocyclization of tetrapeptides.
    Tai DF; Lin YF
    Chem Commun (Camb); 2008 Nov; (43):5598-600. PubMed ID: 18997964
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthesis of all-L cyclic tetrapeptides using pseudoprolines as removable turn inducers.
    Fairweather KA; Sayyadi N; Luck IJ; Clegg JK; Jolliffe KA
    Org Lett; 2010 Jul; 12(14):3136-9. PubMed ID: 20565133
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The cyclization of peptides and depsipeptides.
    Davies JS
    J Pept Sci; 2003 Aug; 9(8):471-501. PubMed ID: 12952390
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synthesis of constrained head-to-tail cyclic tetrapeptides by an imine-induced ring-closing/contraction strategy.
    Wong CT; Lam HY; Song T; Chen G; Li X
    Angew Chem Int Ed Engl; 2013 Sep; 52(39):10212-5. PubMed ID: 23934633
    [No Abstract]   [Full Text] [Related]  

  • 5. Difficult macrocyclizations: new strategies for synthesizing highly strained cyclic tetrapeptides.
    Meutermans WD; Bourne GT; Golding SW; Horton DA; Campitelli MR; Craik D; Scanlon M; Smythe ML
    Org Lett; 2003 Jul; 5(15):2711-4. PubMed ID: 12868896
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cyclic Tetrapeptides from Nature and Design: A Review of Synthetic Methodologies, Structure, and Function.
    Sarojini V; Cameron AJ; Varnava KG; Denny WA; Sanjayan G
    Chem Rev; 2019 Sep; 119(17):10318-10359. PubMed ID: 31418274
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Copper(I)-Mediated Denitrogenative Macrocyclization for the Synthesis of Cyclic α
    Chen CC; Wang SF; Su YY; Lin YA; Lin PC
    Chem Asian J; 2017 Jun; 12(12):1326-1337. PubMed ID: 28395122
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metathesis assisted synthesis of cyclic peptides.
    Illesinghe J; Guo CX; Garland R; Ahmed A; van Lierop B; Elaridi J; Jackson WR; Robinson AJ
    Chem Commun (Camb); 2009 Jan; (3):295-7. PubMed ID: 19209307
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cyclic α,β-tetrapeptoids: sequence-dependent cyclization and conformational preference.
    Caumes C; Fernandes C; Roy O; Hjelmgaard T; Wenger E; Didierjean C; Taillefumier C; Faure S
    Org Lett; 2013 Jul; 15(14):3626-9. PubMed ID: 23806006
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecularly imprinted tunable binding sites based on conjugated prosthetic groups and ion-paired cofactors.
    Takeda K; Kuwahara A; Ohmori K; Takeuchi T
    J Am Chem Soc; 2009 Jul; 131(25):8833-8. PubMed ID: 19496538
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Studies towards enantioselective surface imprinted polymers.
    Yilmaz E; Billing J; Boyd B; Möller P; Rees A
    J Sep Sci; 2009 Oct; 32(19):3274-7. PubMed ID: 19739143
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthesis of constrained helical peptides by thioether ligation: application to analogs of gp41.
    Brunel FM; Dawson PE
    Chem Commun (Camb); 2005 May; (20):2552-4. PubMed ID: 15900323
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthesis of the pyoverdin chromophore by a biomimetic oxidative cyclization.
    Jones RC; Yau SC; Iley JN; Smith JE; Dickson J; Elsegood MR; McKee V; Coles SJ
    Org Lett; 2009 Apr; 11(7):1519-22. PubMed ID: 19260647
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Short-chain oligopeptides with copper(II) binding properties: The impact of specific structural modifications on the copper(II) coordination abilities.
    Matera-Witkiewicz A; Brasuń J; Swiatek-Kozłowska J; Pratesi A; Ginanneschi M; Messori L
    J Inorg Biochem; 2009 May; 103(5):678-88. PubMed ID: 19232735
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Asymmetric synthesis of tetrahydroquinolin-3-ols via CoCl2-catalyzed reductive cyclization of nitro cyclic sulfites with NaBH4.
    Jagdale AR; Reddy RS; Sudalai A
    Org Lett; 2009 Feb; 11(4):803-6. PubMed ID: 19159276
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multi-analyte imprinting capability of OMNiMIPs versus traditional molecularly imprinted polymers.
    Meng AC; LeJeune J; Spivak DA
    J Mol Recognit; 2009; 22(2):121-8. PubMed ID: 19195014
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Noncovalently galactose imprinted polymer for the recognition of different saccharides.
    Okutucu B; Onal S; Telefoncu A
    Talanta; 2009 May; 78(3):1190-3. PubMed ID: 19269492
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Syntheses of molecularly imprinted polymers: Molecular recognition of cyproheptadine using original print molecules and azatadine as dummy templates.
    Feás X; Seijas JA; Vázquez-Tato MP; Regal P; Cepeda A; Fente C
    Anal Chim Acta; 2009 Jan; 631(2):237-44. PubMed ID: 19084632
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An effective method of on-resin disulfide bond formation in peptides.
    Galande AK; Weissleder R; Tung CH
    J Comb Chem; 2005; 7(2):174-7. PubMed ID: 15762743
    [No Abstract]   [Full Text] [Related]  

  • 20. Molecularly imprinted polymers as affinity-based separation media for sample preparation.
    Haginaka J
    J Sep Sci; 2009 May; 32(10):1548-65. PubMed ID: 19472278
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.