These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
215 related articles for article (PubMed ID: 18998159)
1. Metabolomic and genetic analyses of flavonol synthesis in Arabidopsis thaliana support the in vivo involvement of leucoanthocyanidin dioxygenase. Stracke R; De Vos RC; Bartelniewoehner L; Ishihara H; Sagasser M; Martens S; Weisshaar B Planta; 2009 Jan; 229(2):427-45. PubMed ID: 18998159 [TBL] [Abstract][Full Text] [Related]
4. Characterization of flavonol synthase and leucoanthocyanidin dioxygenase genes in Arabidopsis. Further evidence for differential regulation of "early" and "late" genes. Pelletier MK; Murrell JR; Shirley BW Plant Physiol; 1997 Apr; 113(4):1437-45. PubMed ID: 9112784 [TBL] [Abstract][Full Text] [Related]
5. Involvement of the R2R3-MYB transcription factor MYB21 and its homologs in regulating flavonol accumulation in Arabidopsis stamen. Zhang X; He Y; Li L; Liu H; Hong G J Exp Bot; 2021 May; 72(12):4319-4332. PubMed ID: 33831169 [TBL] [Abstract][Full Text] [Related]
6. Generation and characterisation of an Arabidopsis thaliana f3h/fls1/ans triple mutant that accumulates eriodictyol derivatives. Schilbert HM; Busche M; Sáez V; Angeli A; Weisshaar B; Martens S; Stracke R BMC Plant Biol; 2024 Feb; 24(1):99. PubMed ID: 38331743 [TBL] [Abstract][Full Text] [Related]
7. The Reaumuria trigyna leucoanthocyanidin dioxygenase (RtLDOX) gene complements anthocyanidin synthesis and increases the salt tolerance potential of a transgenic Arabidopsis LDOX mutant. Zhang H; Du C; Wang Y; Wang J; Zheng L; Wang Y Plant Physiol Biochem; 2016 Sep; 106():278-87. PubMed ID: 27219053 [TBL] [Abstract][Full Text] [Related]
8. Drastic anthocyanin increase in response to PAP1 overexpression in fls1 knockout mutant confers enhanced osmotic stress tolerance in Arabidopsis thaliana. Lee WJ; Jeong CY; Kwon J; Van Kien V; Lee D; Hong SW; Lee H Plant Cell Rep; 2016 Nov; 35(11):2369-2379. PubMed ID: 27562381 [TBL] [Abstract][Full Text] [Related]
9. Differential regulation of closely related R2R3-MYB transcription factors controls flavonol accumulation in different parts of the Arabidopsis thaliana seedling. Stracke R; Ishihara H; Huep G; Barsch A; Mehrtens F; Niehaus K; Weisshaar B Plant J; 2007 May; 50(4):660-77. PubMed ID: 17419845 [TBL] [Abstract][Full Text] [Related]
10. Characterization of Arabidopsis thaliana FLAVONOL SYNTHASE 1 (FLS1) -overexpression plants in response to abiotic stress. Nguyen NH; Kim JH; Kwon J; Jeong CY; Lee W; Lee D; Hong SW; Lee H Plant Physiol Biochem; 2016 Jun; 103():133-42. PubMed ID: 26990404 [TBL] [Abstract][Full Text] [Related]
11. Disruption of specific flavonoid genes enhances the accumulation of flavonoid enzymes and end-products in Arabidopsis seedlings. Pelletier MK; Burbulis IE; Winkel-Shirley B Plant Mol Biol; 1999 May; 40(1):45-54. PubMed ID: 10394944 [TBL] [Abstract][Full Text] [Related]
12. Ectopic expression of DoFLS1 from Dendrobium officinale enhances flavonol accumulation and abiotic stress tolerance in Arabidopsis thaliana. Yu Z; Dong W; Teixeira da Silva JA; He C; Si C; Duan J Protoplasma; 2021 Jul; 258(4):803-815. PubMed ID: 33404922 [TBL] [Abstract][Full Text] [Related]
13. Leucoanthocyanidin Dioxygenase in Arabidopsis thaliana: characterization of mutant alleles and regulation by MYB-BHLH-TTG1 transcription factor complexes. Appelhagen I; Jahns O; Bartelniewoehner L; Sagasser M; Weisshaar B; Stracke R Gene; 2011 Sep; 484(1-2):61-8. PubMed ID: 21683773 [TBL] [Abstract][Full Text] [Related]
14. Natural variation in flavonol accumulation in Arabidopsis is determined by the flavonol glucosyltransferase BGLU6. Ishihara H; Tohge T; Viehöver P; Fernie AR; Weisshaar B; Stracke R J Exp Bot; 2016 Mar; 67(5):1505-17. PubMed ID: 26717955 [TBL] [Abstract][Full Text] [Related]
15. Cloning and characterization of a UV-B-inducible maize flavonol synthase. Falcone Ferreyra ML; Rius S; Emiliani J; Pourcel L; Feller A; Morohashi K; Casati P; Grotewold E Plant J; 2010 Apr; 62(1):77-91. PubMed ID: 20059741 [TBL] [Abstract][Full Text] [Related]
16. Role of Flavonol Synthesized by Nucleus FLS1 in Zhang X; Yang H; Schaufelberger M; Li X; Cao Q; Xiao H; Ren Z J Agric Food Chem; 2020 Sep; 68(36):9646-9653. PubMed ID: 32786845 [TBL] [Abstract][Full Text] [Related]
17. Feedback inhibition of the general phenylpropanoid and flavonol biosynthetic pathways upon a compromised flavonol-3-O-glycosylation. Yin R; Messner B; Faus-Kessler T; Hoffmann T; Schwab W; Hajirezaei MR; von Saint Paul V; Heller W; Schäffner AR J Exp Bot; 2012 Apr; 63(7):2465-78. PubMed ID: 22249996 [TBL] [Abstract][Full Text] [Related]
18. Functional analysis of a predicted flavonol synthase gene family in Arabidopsis. Owens DK; Alerding AB; Crosby KC; Bandara AB; Westwood JH; Winkel BS Plant Physiol; 2008 Jul; 147(3):1046-61. PubMed ID: 18467451 [TBL] [Abstract][Full Text] [Related]
19. The Arabidopsis TDS4 gene encodes leucoanthocyanidin dioxygenase (LDOX) and is essential for proanthocyanidin synthesis and vacuole development. Abrahams S; Lee E; Walker AR; Tanner GJ; Larkin PJ; Ashton AR Plant J; 2003 Sep; 35(5):624-36. PubMed ID: 12940955 [TBL] [Abstract][Full Text] [Related]
20. Analysis of PRODUCTION OF FLAVONOL GLYCOSIDES-dependent flavonol glycoside accumulation in Arabidopsis thaliana plants reveals MYB11-, MYB12- and MYB111-independent flavonol glycoside accumulation. Stracke R; Jahns O; Keck M; Tohge T; Niehaus K; Fernie AR; Weisshaar B New Phytol; 2010 Dec; 188(4):985-1000. PubMed ID: 20731781 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]