These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
528 related articles for article (PubMed ID: 18998674)
1. TiO2-WO3 composite nanotubes by alloy anodization: growth and enhanced electrochromic properties. Nah YC; Ghicov A; Kim D; Berger S; Schmuki P J Am Chem Soc; 2008 Dec; 130(48):16154-5. PubMed ID: 18998674 [TBL] [Abstract][Full Text] [Related]
2. Anodic growth of highly ordered TiO2 nanotube arrays to 134 microm in length. Paulose M; Shankar K; Yoriya S; Prakasam HE; Varghese OK; Mor GK; LaTempa TJ; Fitzgerald A; Grimes CA J Phys Chem B; 2006 Aug; 110(33):16179-84. PubMed ID: 16913737 [TBL] [Abstract][Full Text] [Related]
3. Highly ordered coaxial bimodal nanotube arrays prepared by self-organizing anodization on Ti alloy. Zhang W; Xi Z; Li G; Wang Q; Tang H; Liu Y; Zhao Y; Jiang L Small; 2009 Aug; 5(15):1742-6. PubMed ID: 19367601 [No Abstract] [Full Text] [Related]
4. Nanoporous TiO2 and WO3 films by anodization of titanium and tungsten substrates: influence of process variables on morphology and photoelectrochemical response. de Tacconi NR; Chenthamarakshan CR; Yogeeswaran G; Watcharenwong A; de Zoysa RS; Basit NA; Rajeshwar K J Phys Chem B; 2006 Dec; 110(50):25347-55. PubMed ID: 17165981 [TBL] [Abstract][Full Text] [Related]
5. Self-organized nanotubular oxide layers on Ti-6Al-7Nb and Ti-6Al-4V formed by anodization in NH4F solutions. Macak JM; Tsuchiya H; Taveira L; Ghicov A; Schmuki P J Biomed Mater Res A; 2005 Dec; 75(4):928-33. PubMed ID: 16138327 [TBL] [Abstract][Full Text] [Related]
6. A TiO2 nanostructure transformation: from ordered nanotubes to nanoparticles. Alivov Y; Fan ZY Nanotechnology; 2009 Oct; 20(40):405610. PubMed ID: 19752502 [TBL] [Abstract][Full Text] [Related]
10. Self-organized double-wall oxide nanotube layers on glass-forming Ti-Zr-Si(-Nb) alloys. Sopha H; Pohl D; Damm C; Hromadko L; Rellinghaus B; Gebert A; Macak JM Mater Sci Eng C Mater Biol Appl; 2017 Jan; 70(Pt 1):258-263. PubMed ID: 27770889 [TBL] [Abstract][Full Text] [Related]
11. Fabrication of highly ordered TiO2 nanotube arrays via anodization of Ti-6Al-4V alloy sheet. Wang L; Zhao TT; Zhang Z; Li G J Nanosci Nanotechnol; 2010 Dec; 10(12):8312-21. PubMed ID: 21121333 [TBL] [Abstract][Full Text] [Related]
12. Application of highly ordered TiO2 nanotube arrays in flexible dye-sensitized solar cells. Kuang D; Brillet J; Chen P; Takata M; Uchida S; Miura H; Sumioka K; Zakeeruddin SM; Grätzel M ACS Nano; 2008 Jun; 2(6):1113-6. PubMed ID: 19206327 [TBL] [Abstract][Full Text] [Related]
13. An electrochemical study on self-ordered nanoporous and nanotubular oxide on Ti-35Nb-5Ta-7Zr alloy for biomedical applications. Saji VS; Choe HC; Brantley WA Acta Biomater; 2009 Jul; 5(6):2303-10. PubMed ID: 19289307 [TBL] [Abstract][Full Text] [Related]
14. Nb doped TiO2 nanotubes for enhanced photoelectrochemical water-splitting. Das C; Roy P; Yang M; Jha H; Schmuki P Nanoscale; 2011 Aug; 3(8):3094-6. PubMed ID: 21761039 [TBL] [Abstract][Full Text] [Related]
15. Fabrication of highly ordered TiO2 nanorod/nanotube adjacent arrays for photoelectrochemical applications. Zhang H; Liu P; Liu X; Zhang S; Yao X; An T; Amal R; Zhao H Langmuir; 2010 Jul; 26(13):11226-32. PubMed ID: 20384304 [TBL] [Abstract][Full Text] [Related]
16. Anodic fabrication and bioactivity of Nb-doped TiO2 nanotubes. Ding D; Ning C; Huang L; Jin F; Hao Y; Bai S; Li Y; Li M; Mao D Nanotechnology; 2009 Jul; 20(30):305103. PubMed ID: 19581696 [TBL] [Abstract][Full Text] [Related]
17. Graphene oxide modified TiO2 nanotube arrays: enhanced visible light photoelectrochemical properties. Song P; Zhang X; Sun M; Cui X; Lin Y Nanoscale; 2012 Mar; 4(5):1800-4. PubMed ID: 22297577 [TBL] [Abstract][Full Text] [Related]
18. A freestanding membrane of highly ordered anodic ZrO2 nanotube arrays. Shin Y; Lee S Nanotechnology; 2009 Mar; 20(10):105301. PubMed ID: 19417516 [TBL] [Abstract][Full Text] [Related]
19. Microstructure and deformation behavior of biocompatible TiO2 nanotubes on titanium substrate. Crawford GA; Chawla N; Das K; Bose S; Bandyopadhyay A Acta Biomater; 2007 May; 3(3):359-67. PubMed ID: 17067860 [TBL] [Abstract][Full Text] [Related]
20. Growth of nano-scale hydroxyapatite using chemically treated titanium oxide nanotubes. Oh SH; Finõnes RR; Daraio C; Chen LH; Jin S Biomaterials; 2005 Aug; 26(24):4938-43. PubMed ID: 15769528 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]