These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

330 related articles for article (PubMed ID: 18999429)

  • 1. Connections of activated hopping processes with the breakdown of the Stokes-Einstein relation and with aspects of dynamical heterogeneities.
    Chong SH
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Oct; 78(4 Pt 1):041501. PubMed ID: 18999429
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A possible scenario for the fragile-to-strong dynamic crossover predicted by the extended mode-coupling theory for glass transition.
    Chong SH; Chen SH; Mallamace F
    J Phys Condens Matter; 2009 Dec; 21(50):504101. PubMed ID: 21836212
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of gold nanoparticles on structure and dynamics of binary Lennard-Jones liquid: direct space analysis.
    Separdar L; Davatolhagh S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Feb; 87(2):022305. PubMed ID: 23496514
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evidence of dynamic crossover phenomena in water and other glass-forming liquids: experiments, MD simulations and theory.
    Chen SH; Zhang Y; Lagi M; Chong SH; Baglioni P; Mallamace F
    J Phys Condens Matter; 2009 Dec; 21(50):504102. PubMed ID: 21836213
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Continuous time random walk concepts applied to extended mode coupling theory: a study of the Stokes-Einstein breakdown.
    Nandi MK; Maitra Bhattacharyya S
    J Phys Condens Matter; 2020 Feb; 32(6):064001. PubMed ID: 31648206
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Facilitation, complexity growth, mode coupling, and activated dynamics in supercooled liquids.
    Bhattacharyya SM; Bagchi B; Wolynes PG
    Proc Natl Acad Sci U S A; 2008 Oct; 105(42):16077-82. PubMed ID: 18927234
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hopping and the Stokes-Einstein relation breakdown in simple glass formers.
    Charbonneau P; Jin Y; Parisi G; Zamponi F
    Proc Natl Acad Sci U S A; 2014 Oct; 111(42):15025-30. PubMed ID: 25288722
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Theory of dynamic barriers, activated hopping, and the glass transition in polymer melts.
    Schweizer KS; Saltzman EJ
    J Chem Phys; 2004 Jul; 121(4):1984-2000. PubMed ID: 15260751
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Glass transition of the monodisperse Gaussian core model.
    Ikeda A; Miyazaki K
    Phys Rev Lett; 2011 Jan; 106(1):015701. PubMed ID: 21231755
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Relaxation in a glassy binary mixture: mode-coupling-like power laws, dynamic heterogeneity, and a new non-Gaussian parameter.
    Flenner E; Szamel G
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Jul; 72(1 Pt 1):011205. PubMed ID: 16089949
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Slow relaxations and stringlike jump motions in fragile glass-forming liquids: breakdown of the Stokes-Einstein relation.
    Kawasaki T; Onuki A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jan; 87(1):012312. PubMed ID: 23410336
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Slow dynamics of the high density Gaussian core model.
    Ikeda A; Miyazaki K
    J Chem Phys; 2011 Aug; 135(5):054901. PubMed ID: 21823726
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Exactly solvable toy model that mimics the mode coupling theory of supercooled liquid and glass transition.
    Kawasaki K; Kim B
    Phys Rev Lett; 2001 Apr; 86(16):3582-5. PubMed ID: 11328028
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Correlation between dynamic slowing down and local icosahedral ordering in undercooled liquid Al80Ni20 alloy.
    Jakse N; Pasturel A
    J Chem Phys; 2015 Aug; 143(8):084508. PubMed ID: 26328857
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Activated hopping and dynamical fluctuation effects in hard sphere suspensions and fluids.
    Saltzman EJ; Schweizer KS
    J Chem Phys; 2006 Jul; 125(4):44509. PubMed ID: 16942158
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fast Vibrational Modes and Slow Heterogeneous Dynamics in Polymers and Viscous Liquids.
    Puosi F; Tripodo A; Leporini D
    Int J Mol Sci; 2019 Nov; 20(22):. PubMed ID: 31739510
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bridging the gap between the mode coupling and the random first order transition theories of structural relaxation in liquids.
    Bhattacharyya SM; Bagchi B; Wolynes PG
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Sep; 72(3 Pt 1):031509. PubMed ID: 16241446
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Connection of translational and rotational dynamical heterogeneities with the breakdown of the Stokes-Einstein and Stokes-Einstein-Debye relations in water.
    Mazza MG; Giovambattista N; Stanley HE; Starr FW
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Sep; 76(3 Pt 1):031203. PubMed ID: 17930235
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Crossovers in the dynamics of supercooled liquids probed by an amorphous wall.
    Hocky GM; Berthier L; Kob W; Reichman DR
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 May; 89(5):052311. PubMed ID: 25353804
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Suppression of the rate of growth of dynamic heterogeneities and its relation to the local structure in a supercooled polydisperse liquid.
    Abraham SE; Bagchi B
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Nov; 78(5 Pt 1):051501. PubMed ID: 19113130
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.