These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
175 related articles for article (PubMed ID: 18999479)
1. Properties of nodal domains in a pseudointegrable barrier billiard. Dietz B; Friedrich T; Miski-Oglu M; Richter A; Schäfer F Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Oct; 78(4 Pt 2):045201. PubMed ID: 18999479 [TBL] [Abstract][Full Text] [Related]
2. Investigation of nodal domains in the chaotic microwave ray-splitting rough billiard. Hul O; Savytskyy N; Tymoshchuk O; Bauch S; Sirko L Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Dec; 72(6 Pt 2):066212. PubMed ID: 16486045 [TBL] [Abstract][Full Text] [Related]
3. Experimental investigation of nodal domains in the chaotic microwave rough billiard. Savytskyy N; Hul O; Sirko L Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Nov; 70(5 Pt 2):056209. PubMed ID: 15600730 [TBL] [Abstract][Full Text] [Related]
4. First experimental observation of superscars in a pseudointegrable barrier billiard. Bogomolny E; Dietz B; Friedrich T; Miski-Oglu M; Richter A; Schäfer F; Schmit C Phys Rev Lett; 2006 Dec; 97(25):254102. PubMed ID: 17280358 [TBL] [Abstract][Full Text] [Related]
6. Crossover from regular to irregular behavior in current flow through open billiards. Berggren KF; Sadreev AF; Starikov AA Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Jul; 66(1 Pt 2):016218. PubMed ID: 12241472 [TBL] [Abstract][Full Text] [Related]
8. Nodal domains in open microwave systems. Kuhl U; Höhmann R; Stöckmann HJ; Gnutzmann S Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Mar; 75(3 Pt 2):036204. PubMed ID: 17500766 [TBL] [Abstract][Full Text] [Related]
9. Low-rank perturbations and the spectral statistics of pseudointegrable billiards. Gorin T; Wiersig J Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Dec; 68(6 Pt 2):065205. PubMed ID: 14754256 [TBL] [Abstract][Full Text] [Related]
10. Percolation model for nodal domains of chaotic wave functions. Bogomolny E; Schmit C Phys Rev Lett; 2002 Mar; 88(11):114102. PubMed ID: 11909404 [TBL] [Abstract][Full Text] [Related]
11. Structure of wave functions of pseudointegrable billiards. Bogomolny E; Schmit C Phys Rev Lett; 2004 Jun; 92(24):244102. PubMed ID: 15245084 [TBL] [Abstract][Full Text] [Related]
12. Leaking billiards. Nagler J; Krieger M; Linke M; Schönke J; Wiersig J Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Apr; 75(4 Pt 2):046204. PubMed ID: 17500975 [TBL] [Abstract][Full Text] [Related]
13. Distribution of resonance strengths in microwave billiards of mixed and chaotic dynamics. Dembowski C; Dietz B; Friedrich T; Gräf HD; Harney HL; Heine A; Miski-Oglu M; Richter A Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Apr; 71(4 Pt 2):046202. PubMed ID: 15903765 [TBL] [Abstract][Full Text] [Related]
14. Observation of chaotic and regular dynamics in atom-optics billiards. Friedman N; Kaplan A; Carasso D; Davidson N Phys Rev Lett; 2001 Feb; 86(8):1518-21. PubMed ID: 11290182 [TBL] [Abstract][Full Text] [Related]
15. Spectral properties of quantized barrier billiards. Wiersig J Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Apr; 65(4 Pt 2A):046217. PubMed ID: 12005986 [TBL] [Abstract][Full Text] [Related]
16. Remarks on nodal volume statistics for regular and chaotic wave functions in various dimensions. Gnutzmann S; Lois S Philos Trans A Math Phys Eng Sci; 2014 Jan; 372(2007):20120521. PubMed ID: 24344343 [TBL] [Abstract][Full Text] [Related]
17. Monte Carlo simulation of classical spin models with chaotic billiards. Suzuki H Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Nov; 88(5):052144. PubMed ID: 24329251 [TBL] [Abstract][Full Text] [Related]
18. Trace formula for dielectric cavities. II. Regular, pseudointegrable, and chaotic examples. Bogomolny E; Djellali N; Dubertrand R; Gozhyk I; Lebental M; Schmit C; Ulysse C; Zyss J Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Mar; 83(3 Pt 2):036208. PubMed ID: 21517576 [TBL] [Abstract][Full Text] [Related]
19. Fermi acceleration in chaotic shape-preserving billiards. Batistić B Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Feb; 89(2):022912. PubMed ID: 25353550 [TBL] [Abstract][Full Text] [Related]
20. Nodal domain distribution for a nonintegrable two-dimensional anharmonic oscillator. Aiba H; Suzuki T Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Dec; 72(6 Pt 2):066214. PubMed ID: 16486047 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]