These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

356 related articles for article (PubMed ID: 18999511)

  • 1. Optimal weighted networks of phase oscillators for synchronization.
    Tanaka T; Aoyagi T
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Oct; 78(4 Pt 2):046210. PubMed ID: 18999511
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synchronization in symmetric bipolar population networks.
    Buzna L; Lozano S; Díaz-Guilera A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Dec; 80(6 Pt 2):066120. PubMed ID: 20365244
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Learning-rate-dependent clustering and self-development in a network of coupled phase oscillators.
    Niyogi RK; English LQ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Dec; 80(6 Pt 2):066213. PubMed ID: 20365260
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improving the frequency precision of oscillators by synchronization.
    Cross MC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Apr; 85(4 Pt 2):046214. PubMed ID: 22680563
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Determination of the critical coupling of explosive synchronization transitions in scale-free networks by mean-field approximations.
    Peron TK; Rodrigues FA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Nov; 86(5 Pt 2):056108. PubMed ID: 23214844
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Entanglement tongue and quantum synchronization of disordered oscillators.
    Lee TE; Chan CK; Wang S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Feb; 89(2):022913. PubMed ID: 25353551
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Frequency discontinuity and amplitude death with time-delay asymmetry.
    Punetha N; Karnatak R; Prasad A; Kurths J; Ramaswamy R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Apr; 85(4 Pt 2):046204. PubMed ID: 22680553
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Probabilistic convergence guarantees for type-II pulse-coupled oscillators.
    Nishimura J; Friedman EJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Aug; 86(2 Pt 2):025201. PubMed ID: 23005815
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Onset of synchronization in weighted scale-free networks.
    Wang WX; Huang L; Lai YC; Chen G
    Chaos; 2009 Mar; 19(1):013134. PubMed ID: 19334998
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Determination of the critical coupling for oscillators in a ring.
    El-Nashar HF; Cerdeira HA
    Chaos; 2009 Sep; 19(3):033127. PubMed ID: 19792007
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spurious detection of phase synchronization in coupled nonlinear oscillators.
    Xu L; Chen Z; Hu K; Stanley HE; Ivanov PCh
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Jun; 73(6 Pt 2):065201. PubMed ID: 16906897
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dynamics of coupled repressilators: the role of mRNA kinetics and transcription cooperativity.
    Potapov I; Volkov E; Kuznetsov A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Mar; 83(3 Pt 1):031901. PubMed ID: 21517519
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Explosive synchronization transitions in complex neural networks.
    Chen H; He G; Huang F; Shen C; Hou Z
    Chaos; 2013 Sep; 23(3):033124. PubMed ID: 24089960
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Clustering behaviors in networks of integrate-and-fire oscillators.
    Mauroy A; Sepulchre R
    Chaos; 2008 Sep; 18(3):037122. PubMed ID: 19045496
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synchronization of weakly perturbed Markov chain oscillators.
    Tönjes R; Kori H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Nov; 84(5 Pt 2):056206. PubMed ID: 22181483
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Estimating the structure of small dynamical networks from the state time evolution of one node.
    Autariello R; Dzakpasu R; Sorrentino F
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jan; 87(1):012915. PubMed ID: 23410412
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Assortative and modular networks are shaped by adaptive synchronization processes.
    Avalos-Gaytán V; Almendral JA; Papo D; Schaeffer SE; Boccaletti S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jul; 86(1 Pt 2):015101. PubMed ID: 23005481
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spontaneous mode switching in coupled oscillators competing for constant amounts of resources.
    Hirata Y; Aono M; Hara M; Aihara K
    Chaos; 2010 Mar; 20(1):013117. PubMed ID: 20370272
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Collective synchronization in populations of globally coupled phase oscillators with drifting frequencies.
    Rougemont J; Naef F
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Jan; 73(1 Pt 1):011104. PubMed ID: 16486119
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Relaying phase synchrony in chaotic oscillator chains.
    Agrawal M; Prasad A; Ramaswamy R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Nov; 84(5 Pt 2):056205. PubMed ID: 22181482
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.