These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

389 related articles for article (PubMed ID: 18999536)

  • 1. Influence of the dispersive and dissipative scales alpha and beta on the energy spectrum of the Navier-Stokes alphabeta equations.
    Chen X; Fried E
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Oct; 78(4 Pt 2):046317. PubMed ID: 18999536
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Impact of the inherent separation of scales in the Navier-Stokes- alphabeta equations.
    Kim TY; Cassiani M; Albertson JD; Dolbow JE; Fried E; Gurtin ME
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Apr; 79(4 Pt 2):045307. PubMed ID: 19518292
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Turbulent kinetic energy and a possible hierarchy of length scales in a generalization of the Navier-Stokes alpha theory.
    Fried E; Gurtin ME
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 May; 75(5 Pt 2):056306. PubMed ID: 17677163
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Navier-Stokes Equations Do Not Describe the Smallest Scales of Turbulence in Gases.
    McMullen RM; Krygier MC; Torczynski JR; Gallis MA
    Phys Rev Lett; 2022 Mar; 128(11):114501. PubMed ID: 35363027
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Highly turbulent solutions of the Lagrangian-averaged Navier-Stokes alpha model and their large-eddy-simulation potential.
    Pietarila Graham J; Holm DD; Mininni PD; Pouquet A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Nov; 76(5 Pt 2):056310. PubMed ID: 18233759
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A correspondence between the multifractal model of turbulence and the Navier-Stokes equations.
    Dubrulle B; Gibbon JD
    Philos Trans A Math Phys Eng Sci; 2022 Mar; 380(2218):20210092. PubMed ID: 35034496
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transition of the scaling law in inverse energy cascade range caused by a nonlocal excitation of coherent structures observed in two-dimensional turbulent fields.
    Mizuta A; Matsumoto T; Toh S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Nov; 88(5):053009. PubMed ID: 24329353
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Direct numerical simulations of capillary wave turbulence.
    Deike L; Fuster D; Berhanu M; Falcon E
    Phys Rev Lett; 2014 Jun; 112(23):234501. PubMed ID: 24972211
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Large eddy simulation in a rotary blood pump: Viscous shear stress computation and comparison with unsteady Reynolds-averaged Navier-Stokes simulation.
    Torner B; Konnigk L; Hallier S; Kumar J; Witte M; Wurm FH
    Int J Artif Organs; 2018 Nov; 41(11):752-763. PubMed ID: 29898615
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Constrained Reversible System for Navier-Stokes Turbulence.
    Jaccod A; Chibbaro S
    Phys Rev Lett; 2021 Nov; 127(19):194501. PubMed ID: 34797128
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reynolds number scaling of velocity increments in isotropic turbulence.
    Iyer KP; Sreenivasan KR; Yeung PK
    Phys Rev E; 2017 Feb; 95(2-1):021101. PubMed ID: 28297886
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Boltzmann equation and hydrodynamic equations: their equilibrium and non-equilibrium behaviour.
    Verma MK
    Philos Trans A Math Phys Eng Sci; 2020 Jul; 378(2175):20190470. PubMed ID: 32564728
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Kinetically reduced local Navier-Stokes equations: an alternative approach to hydrodynamics.
    Karlin IV; Tomboulides AG; Frouzakis CE; Ansumali S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Sep; 74(3 Pt 2):035702. PubMed ID: 17025701
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In what sense is turbulence an unsolved problem?
    Nelkin M
    Science; 1992 Jan; 255(5044):566-70. PubMed ID: 17792378
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nonperturbative renormalization group study of the stochastic Navier-Stokes equation.
    Mejía-Monasterio C; Muratore-Ginanneschi P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jul; 86(1 Pt 2):016315. PubMed ID: 23005533
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hydrodynamics at the smallest scales: a solvability criterion for Navier-Stokes equations in high dimensions.
    Viswanathan TM; Viswanathan GM
    Philos Trans A Math Phys Eng Sci; 2011 Jan; 369(1935):359-70. PubMed ID: 21149377
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dissipation-range fluid turbulence and thermal noise.
    Bandak D; Goldenfeld N; Mailybaev AA; Eyink G
    Phys Rev E; 2022 Jun; 105(6-2):065113. PubMed ID: 35854607
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Low-dimensional representations of exact coherent states of the Navier-Stokes equations from the resolvent model of wall turbulence.
    Sharma AS; Moarref R; McKeon BJ; Park JS; Graham MD; Willis AP
    Phys Rev E; 2016 Feb; 93(2):021102. PubMed ID: 26986280
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Renormalized eddy viscosity and Kolmogorov's constant in forced Navier-Stokes turbulence.
    Zhou Y; Vahala G; Hossain M
    Phys Rev A Gen Phys; 1989 Nov; 40(10):5865-5874. PubMed ID: 9901965
    [No Abstract]   [Full Text] [Related]  

  • 20. Coupled double-distribution-function lattice Boltzmann method for the compressible Navier-Stokes equations.
    Li Q; He YL; Wang Y; Tao WQ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Nov; 76(5 Pt 2):056705. PubMed ID: 18233788
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.