These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
273 related articles for article (PubMed ID: 18999558)
1. Variational method for estimating the rate of convergence of Markov-chain Monte Carlo algorithms. Casey FP; Waterfall JJ; Gutenkunst RN; Myers CR; Sethna JP Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Oct; 78(4 Pt 2):046704. PubMed ID: 18999558 [TBL] [Abstract][Full Text] [Related]
2. A general construction for parallelizing Metropolis-Hastings algorithms. Calderhead B Proc Natl Acad Sci U S A; 2014 Dec; 111(49):17408-13. PubMed ID: 25422442 [TBL] [Abstract][Full Text] [Related]
3. A Monte Carlo Metropolis-Hastings algorithm for sampling from distributions with intractable normalizing constants. Liang F; Jin IH Neural Comput; 2013 Aug; 25(8):2199-234. PubMed ID: 23607562 [TBL] [Abstract][Full Text] [Related]
4. Searching for efficient Markov chain Monte Carlo proposal kernels. Yang Z; Rodríguez CE Proc Natl Acad Sci U S A; 2013 Nov; 110(48):19307-12. PubMed ID: 24218600 [TBL] [Abstract][Full Text] [Related]
5. Variational Hybrid Monte Carlo for Efficient Multi-Modal Data Sampling. Sun S; Zhao J; Gu M; Wang S Entropy (Basel); 2023 Mar; 25(4):. PubMed ID: 37190347 [TBL] [Abstract][Full Text] [Related]
6. A Novel Hybrid Monte Carlo Algorithm for Sampling Path Space. Pinski FJ Entropy (Basel); 2021 Apr; 23(5):. PubMed ID: 33922040 [TBL] [Abstract][Full Text] [Related]
7. Convergence Rates for the Constrained Sampling via Langevin Monte Carlo. Zhu Y Entropy (Basel); 2023 Aug; 25(8):. PubMed ID: 37628264 [TBL] [Abstract][Full Text] [Related]
8. An efficient sampling algorithm for variational Monte Carlo. Scemama A; Lelièvre T; Stoltz G; Cancès E; Caffarel M J Chem Phys; 2006 Sep; 125(11):114105. PubMed ID: 16999464 [TBL] [Abstract][Full Text] [Related]
9. A quasi-Monte Carlo Metropolis algorithm. Owen AB; Tribble SD Proc Natl Acad Sci U S A; 2005 Jun; 102(25):8844-9. PubMed ID: 15956207 [TBL] [Abstract][Full Text] [Related]
10. Assessing the convergence of Markov Chain Monte Carlo methods: an example from evaluation of diagnostic tests in absence of a gold standard. Toft N; Innocent GT; Gettinby G; Reid SW Prev Vet Med; 2007 May; 79(2-4):244-56. PubMed ID: 17292499 [TBL] [Abstract][Full Text] [Related]
11. On free energy barriers in Gaussian priors and failure of cold start MCMC for high-dimensional unimodal distributions. Bandeira AS; Maillard A; Nickl R; Wang S Philos Trans A Math Phys Eng Sci; 2023 May; 381(2247):20220150. PubMed ID: 36970818 [TBL] [Abstract][Full Text] [Related]
12. Estimating the granularity coefficient of a Potts-Markov random field within a Markov chain Monte Carlo algorithm. Pereyra M; Dobigeon N; Batatia H; Tourneret JY IEEE Trans Image Process; 2013 Jun; 22(6):2385-97. PubMed ID: 23475357 [TBL] [Abstract][Full Text] [Related]
13. Comprehensive benchmarking of Markov chain Monte Carlo methods for dynamical systems. Ballnus B; Hug S; Hatz K; Görlitz L; Hasenauer J; Theis FJ BMC Syst Biol; 2017 Jun; 11(1):63. PubMed ID: 28646868 [TBL] [Abstract][Full Text] [Related]
14. Searching for convergence in phylogenetic Markov chain Monte Carlo. Beiko RG; Keith JM; Harlow TJ; Ragan MA Syst Biol; 2006 Aug; 55(4):553-65. PubMed ID: 16857650 [TBL] [Abstract][Full Text] [Related]
15. Weighted maximum posterior marginals for random fields using an ensemble of conditional densities from multiple Markov chain Monte Carlo simulations. Monaco JP; Madabhushi A IEEE Trans Med Imaging; 2011 Jul; 30(7):1353-64. PubMed ID: 21335309 [TBL] [Abstract][Full Text] [Related]
16. Efficient estimation of decay parameters in acoustically coupled-spaces using slice sampling. Jasa T; Xiang N J Acoust Soc Am; 2009 Sep; 126(3):1269-79. PubMed ID: 19739741 [TBL] [Abstract][Full Text] [Related]
17. A rare event sampling method for diffusion Monte Carlo using smart darting. Roberts K; Sebsebie R; Curotto E J Chem Phys; 2012 Feb; 136(7):074104. PubMed ID: 22360233 [TBL] [Abstract][Full Text] [Related]
18. Stochastic gradient Langevin dynamics with adaptive drifts. Kim S; Song Q; Liang F J Stat Comput Simul; 2022; 92(2):318-336. PubMed ID: 35559269 [TBL] [Abstract][Full Text] [Related]
19. Comparing variational Bayes with Markov chain Monte Carlo for Bayesian computation in neuroimaging. Nathoo FS; Lesperance ML; Lawson AB; Dean CB Stat Methods Med Res; 2013 Aug; 22(4):398-423. PubMed ID: 22642986 [TBL] [Abstract][Full Text] [Related]
20. Comparative Monte Carlo efficiency by Monte Carlo analysis. Rubenstein BM; Gubernatis JE; Doll JD Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Sep; 82(3 Pt 2):036701. PubMed ID: 21230207 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]