These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 18999567)

  • 1. Temporal coarse-graining of microscopic-lattice kinetic Monte Carlo simulations via tau leaping.
    Vlachos DG
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Oct; 78(4 Pt 2):046713. PubMed ID: 18999567
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Binomial distribution based tau-leap accelerated stochastic simulation.
    Chatterjee A; Vlachos DG; Katsoulakis MA
    J Chem Phys; 2005 Jan; 122(2):024112. PubMed ID: 15638577
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Coarse-grained lattice kinetic Monte Carlo simulation of systems of strongly interacting particles.
    Dai J; Seider WD; Sinno T
    J Chem Phys; 2008 May; 128(19):194705. PubMed ID: 18500884
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multiscale spatial Monte Carlo simulations: multigriding, computational singular perturbation, and hierarchical stochastic closures.
    Chatterjee A; Vlachos DG
    J Chem Phys; 2006 Feb; 124(6):64110. PubMed ID: 16483199
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A general method for spatially coarse-graining Metropolis Monte Carlo simulations onto a lattice.
    Liu X; Seider WD; Sinno T
    J Chem Phys; 2013 Mar; 138(11):114104. PubMed ID: 23534624
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Time accelerated Monte Carlo simulations of biological networks using the binomial tau-leap method.
    Chatterjee A; Mayawala K; Edwards JS; Vlachos DG
    Bioinformatics; 2005 May; 21(9):2136-7. PubMed ID: 15699024
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spatially adaptive lattice coarse-grained Monte Carlo simulations for diffusion of interacting molecules.
    Chatterjee A; Vlachos DG; Katsoulakis MA
    J Chem Phys; 2004 Dec; 121(22):11420-31. PubMed ID: 15634102
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Monte Carlo simulations of lattice models for single polymer systems.
    Hsu HP
    J Chem Phys; 2014 Oct; 141(16):164903. PubMed ID: 25362337
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Coarse-grained kinetic Monte Carlo models: Complex lattices, multicomponent systems, and homogenization at the stochastic level.
    Collins SD; Chatterjee A; Vlachos DG
    J Chem Phys; 2008 Nov; 129(18):184101. PubMed ID: 19045380
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Efficient step size selection for the tau-leaping simulation method.
    Cao Y; Gillespie DT; Petzold LR
    J Chem Phys; 2006 Jan; 124(4):044109. PubMed ID: 16460151
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Look before you leap: a confidence-based method for selecting species criticality while avoiding negative populations in τ-leaping.
    Yates CA; Burrage K
    J Chem Phys; 2011 Feb; 134(8):084109. PubMed ID: 21361529
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multinomial tau-leaping method for stochastic kinetic simulations.
    Pettigrew MF; Resat H
    J Chem Phys; 2007 Feb; 126(8):084101. PubMed ID: 17343434
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hybrid multiscale coarse-graining for dynamics on complex networks.
    Shen C; Chen H; Hou Z; Kurths J
    Chaos; 2018 Dec; 28(12):123122. PubMed ID: 30599515
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Coarse-grained lattice Monte Carlo simulations with continuous interaction potentials.
    Liu X; Seider WD; Sinno T
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Aug; 86(2 Pt 2):026708. PubMed ID: 23005883
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synchronous relaxation algorithm for parallel kinetic Monte Carlo simulations of thin film growth.
    Merrick M; Fichthorn KA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Jan; 75(1 Pt 1):011606. PubMed ID: 17358166
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lattice model of adsorption in disordered porous materials: mean-field density functional theory and Monte Carlo simulations.
    Sarkisov L; Monson PA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Jan; 65(1 Pt 1):011202. PubMed ID: 11800685
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Coarse-grained Monte Carlo simulations of non-equilibrium systems.
    Liu X; Crocker JC; Sinno T
    J Chem Phys; 2013 Jun; 138(24):244111. PubMed ID: 23822231
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Long-timescale simulations of diffusion in molecular solids.
    Karssemeijer LJ; Pedersen A; Jónsson H; Cuppen HM
    Phys Chem Chem Phys; 2012 Aug; 14(31):10844-52. PubMed ID: 22781964
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An off-lattice, self-learning kinetic Monte Carlo method using local environments.
    Konwar D; Bhute VJ; Chatterjee A
    J Chem Phys; 2011 Nov; 135(17):174103. PubMed ID: 22070288
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Binomial tau-leap spatial stochastic simulation algorithm for applications in chemical kinetics.
    Marquez-Lago TT; Burrage K
    J Chem Phys; 2007 Sep; 127(10):104101. PubMed ID: 17867731
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.