These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
210 related articles for article (PubMed ID: 18999579)
1. Realizing the strongly correlated d-wave Mott-insulator state in a fermionic cold-atom optical lattice. Peterson MR; Zhang C; Tewari S; Sarma SD Phys Rev Lett; 2008 Oct; 101(15):150406. PubMed ID: 18999579 [TBL] [Abstract][Full Text] [Related]
2. A Mott insulator of fermionic atoms in an optical lattice. Jördens R; Strohmaier N; Günter K; Moritz H; Esslinger T Nature; 2008 Sep; 455(7210):204-7. PubMed ID: 18784720 [TBL] [Abstract][Full Text] [Related]
3. Compressibility of a fermionic mott insulator of ultracold atoms. Duarte PM; Hart RA; Yang TL; Liu X; Paiva T; Khatami E; Scalettar RT; Trivedi N; Hulet RG Phys Rev Lett; 2015 Feb; 114(7):070403. PubMed ID: 25763942 [TBL] [Abstract][Full Text] [Related]
4. Evidence for superfluidity of ultracold fermions in an optical lattice. Chin JK; Miller DE; Liu Y; Stan C; Setiawan W; Sanner C; Xu K; Ketterle W Nature; 2006 Oct; 443(7114):961-4. PubMed ID: 17066028 [TBL] [Abstract][Full Text] [Related]
5. Modulation spectroscopy and dynamics of double occupancies in a fermionic Mott insulator. Sensarma R; Pekker D; Lukin MD; Demler E Phys Rev Lett; 2009 Jul; 103(3):035303. PubMed ID: 19659291 [TBL] [Abstract][Full Text] [Related]
6. Mott transition of fermionic atoms in a three-dimensional optical trap. Helmes RW; Costi TA; Rosch A Phys Rev Lett; 2008 Feb; 100(5):056403. PubMed ID: 18352400 [TBL] [Abstract][Full Text] [Related]
7. Metallic and insulating phases of repulsively interacting fermions in a 3D optical lattice. Schneider U; Hackermüller L; Will S; Best T; Bloch I; Costi TA; Helmes RW; Rasch D; Rosch A Science; 2008 Dec; 322(5907):1520-5. PubMed ID: 19056980 [TBL] [Abstract][Full Text] [Related]
8. Interaction-Driven Topological Insulator in Fermionic Cold Atoms on an Optical Lattice: A Design with a Density Functional Formalism. Kitamura S; Tsuji N; Aoki H Phys Rev Lett; 2015 Jul; 115(4):045304. PubMed ID: 26252693 [TBL] [Abstract][Full Text] [Related]
10. Phase coherence, visibility, and the superfluid-Mott-insulator transition on one-dimensional optical lattices. Sengupta P; Rigol M; Batrouni GG; Denteneer PJ; Scalettar RT Phys Rev Lett; 2005 Nov; 95(22):220402. PubMed ID: 16384198 [TBL] [Abstract][Full Text] [Related]
11. Phases of a two-dimensional bose gas in an optical lattice. Jiménez-García K; Compton RL; Lin YJ; Phillips WD; Porto JV; Spielman IB Phys Rev Lett; 2010 Sep; 105(11):110401. PubMed ID: 20867555 [TBL] [Abstract][Full Text] [Related]
12. Local quantum criticality in confined fermions on optical lattices. Rigol M; Muramatsu A; Batrouni GG; Scalettar RT Phys Rev Lett; 2003 Sep; 91(13):130403. PubMed ID: 14525290 [TBL] [Abstract][Full Text] [Related]
13. Wannier permanent wave functions for featureless bosonic mott insulators on the 1/3-filled kagome lattice. Parameswaran SA; Kimchi I; Turner AM; Stamper-Kurn DM; Vishwanath A Phys Rev Lett; 2013 Mar; 110(12):125301. PubMed ID: 25166814 [TBL] [Abstract][Full Text] [Related]
14. In situ observation of incompressible Mott-insulating domains in ultracold atomic gases. Gemelke N; Zhang X; Hung CL; Chin C Nature; 2009 Aug; 460(7258):995-8. PubMed ID: 19693080 [TBL] [Abstract][Full Text] [Related]
15. Exploring correlated 1D bose gases from the superfluid to the mott-insulator state by inelastic light scattering. Clément D; Fabbri N; Fallani L; Fort C; Inguscio M Phys Rev Lett; 2009 Apr; 102(15):155301. PubMed ID: 19518645 [TBL] [Abstract][Full Text] [Related]
17. Creation of a low-entropy quantum gas of polar molecules in an optical lattice. Moses SA; Covey JP; Miecnikowski MT; Yan B; Gadway B; Ye J; Jin DS Science; 2015 Nov; 350(6261):659-62. PubMed ID: 26542566 [TBL] [Abstract][Full Text] [Related]