These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
153 related articles for article (PubMed ID: 18999772)
1. Integrable theory of quantum transport in chaotic cavities. Osipov VA; Kanzieper E Phys Rev Lett; 2008 Oct; 101(17):176804. PubMed ID: 18999772 [TBL] [Abstract][Full Text] [Related]
2. Effect of spatial reflection symmetry on the distribution of the parametric conductance derivative in ballistic chaotic cavities. Martínez-Mares M; Castaño E Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Mar; 71(3 Pt 2A):036201. PubMed ID: 15903540 [TBL] [Abstract][Full Text] [Related]
3. Power Spectrum of Long Eigenlevel Sequences in Quantum Chaotic Systems. Riser R; Osipov VA; Kanzieper E Phys Rev Lett; 2017 May; 118(20):204101. PubMed ID: 28581777 [TBL] [Abstract][Full Text] [Related]
4. Statistics of quantum transport in weakly nonideal chaotic cavities. Rodríguez-Pérez S; Marino R; Novaes M; Vivo P Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Nov; 88(5):052912. PubMed ID: 24329336 [TBL] [Abstract][Full Text] [Related]
5. Distribution of reflection eigenvalues in many-channel chaotic cavities with absorption. Savin DV; Sommers HJ Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Mar; 69(3 Pt 2):035201. PubMed ID: 15089349 [TBL] [Abstract][Full Text] [Related]
6. Statistics of reflection eigenvalues in chaotic cavities with nonideal leads. Vidal P; Kanzieper E Phys Rev Lett; 2012 May; 108(20):206806. PubMed ID: 23003168 [TBL] [Abstract][Full Text] [Related]
7. Soliton structures for the (3 + 1)-dimensional Painlevé integrable equation in fluid mediums. Liu JG Sci Rep; 2024 May; 14(1):11581. PubMed ID: 38773247 [TBL] [Abstract][Full Text] [Related]
8. Integrable generalization of the Toda law to the square lattice. Santini PM; Nieszporski M; Doliwa A Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Nov; 70(5 Pt 2):056615. PubMed ID: 15600787 [TBL] [Abstract][Full Text] [Related]
9. Delay times and reflection in chaotic cavities with absorption. Savin DV; Sommers HJ Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Sep; 68(3 Pt 2):036211. PubMed ID: 14524872 [TBL] [Abstract][Full Text] [Related]
10. Electronic transport in chaotic mesoscopic cavities: A Kwant and random matrix theory based exploration. Chandramouli RS; Srivastav RK; Kumar S Chaos; 2020 Dec; 30(12):123120. PubMed ID: 33380063 [TBL] [Abstract][Full Text] [Related]
11. Universal transport properties of open microwave cavities with and without time-reversal symmetry. Schanze H; Stöckmann HJ; Martínez-Mares M; Lewenkopf CH Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Jan; 71(1 Pt 2):016223. PubMed ID: 15697714 [TBL] [Abstract][Full Text] [Related]
13. Conductance stability in chaotic and integrable quantum dots with random impurities. Wang G; Ying L; Lai YC Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Aug; 92(2):022901. PubMed ID: 26382470 [TBL] [Abstract][Full Text] [Related]
14. Replica limit of the toda lattice equation. Splittorff K; Verbaarschot JJ Phys Rev Lett; 2003 Jan; 90(4):041601. PubMed ID: 12570409 [TBL] [Abstract][Full Text] [Related]
15. Characterizing traveling-wave collisions in granular chains starting from integrable limits: the case of the Korteweg-de Vries equation and the Toda lattice. Shen Y; Kevrekidis PG; Sen S; Hoffman A Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Aug; 90(2):022905. PubMed ID: 25215797 [TBL] [Abstract][Full Text] [Related]
16. Signatures of chaos in time series generated by many-spin systems at high temperatures. Elsayed TA; Hess B; Fine BV Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Aug; 90(2):022910. PubMed ID: 25215802 [TBL] [Abstract][Full Text] [Related]
17. Distributions of conductance and shot noise and associated phase transitions. Vivo P; Majumdar SN; Bohigas O Phys Rev Lett; 2008 Nov; 101(21):216809. PubMed ID: 19113443 [TBL] [Abstract][Full Text] [Related]
18. Universality in chaotic quantum transport: the concordance between random-matrix and semiclassical theories. Berkolaiko G; Kuipers J Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Apr; 85(4 Pt 2):045201. PubMed ID: 22680530 [TBL] [Abstract][Full Text] [Related]
19. Gaussian-optical approach to stable periodic orbit resonances of partially chaotic dielectric micro-cavities. Tureci H; Schwefel H; Stone A; Narimanov E Opt Express; 2002 Aug; 10(16):752-76. PubMed ID: 19451930 [TBL] [Abstract][Full Text] [Related]
20. Semiclassical theory of conductance and noise in open chaotic cavities. Blanter YM; Sukhorukov EV Phys Rev Lett; 2000 Feb; 84(6):1280-3. PubMed ID: 11017498 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]