These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
110 related articles for article (PubMed ID: 18999810)
1. Temperature dependence of electric field noise above gold surfaces. Labaziewicz J; Ge Y; Leibrandt DR; Wang SX; Shewmon R; Chuang IL Phys Rev Lett; 2008 Oct; 101(18):180602. PubMed ID: 18999810 [TBL] [Abstract][Full Text] [Related]
2. Electric force microscopy of semiconductors: theory of cantilever frequency fluctuations and noncontact friction. Lekkala S; Marohn JA; Loring RF J Chem Phys; 2013 Nov; 139(18):184702. PubMed ID: 24320286 [TBL] [Abstract][Full Text] [Related]
3. Suppression of heating rates in cryogenic surface-electrode ion traps. Labaziewicz J; Ge Y; Antohi P; Leibrandt D; Brown KR; Chuang IL Phys Rev Lett; 2008 Jan; 100(1):013001. PubMed ID: 18232755 [TBL] [Abstract][Full Text] [Related]
6. Surface trap with dc-tunable ion-electrode distance. An D; Matthiesen C; Abdelrahman A; Berlin-Udi M; Gorman D; Möller S; Urban E; Häffner H Rev Sci Instrum; 2018 Sep; 89(9):093102. PubMed ID: 30278688 [TBL] [Abstract][Full Text] [Related]
7. 100-fold reduction of electric-field noise in an ion trap cleaned with in situ argon-ion-beam bombardment. Hite DA; Colombe Y; Wilson AC; Brown KR; Warring U; Jördens R; Jost JD; McKay KS; Pappas DP; Leibfried D; Wineland DJ Phys Rev Lett; 2012 Sep; 109(10):103001. PubMed ID: 23005284 [TBL] [Abstract][Full Text] [Related]
8. Noncontact friction and relaxational dynamics of surface defects. She JH; Balatsky AV Phys Rev Lett; 2012 Mar; 108(13):136101. PubMed ID: 22540716 [TBL] [Abstract][Full Text] [Related]
9. Noncontact friction and force fluctuations between closely spaced bodies. Stipe BC; Mamin HJ; Stowe TD; Kenny TW; Rugar D Phys Rev Lett; 2001 Aug; 87(9):096801. PubMed ID: 11531586 [TBL] [Abstract][Full Text] [Related]
10. Measurement of electric-field noise from interchangeable samples with a trapped-ion sensor. McKay KS; Hite DA; Kent PD; Kotler S; Leibfried D; Slichter DH; Wilson AC; Pappas DP Phys Rev A (Coll Park); 2021 Nov; 104(5):. PubMed ID: 38915757 [TBL] [Abstract][Full Text] [Related]
11. Quantum sized gold nanoclusters with atomic precision. Qian H; Zhu M; Wu Z; Jin R Acc Chem Res; 2012 Sep; 45(9):1470-9. PubMed ID: 22720781 [TBL] [Abstract][Full Text] [Related]
12. Temperature dependence of the frequency noise in a mid-IR DFB quantum cascade laser from cryogenic to room temperature. Tombez L; Schilt S; Di Francesco J; Thomann P; Hofstetter D Opt Express; 2012 Mar; 20(7):6851-9. PubMed ID: 22453362 [TBL] [Abstract][Full Text] [Related]
13. Cryogenic ion trapping systems with surface-electrode traps. Antohi PB; Schuster D; Akselrod GM; Labaziewicz J; Ge Y; Lin Z; Bakr WS; Chuang IL Rev Sci Instrum; 2009 Jan; 80(1):013103. PubMed ID: 19191425 [TBL] [Abstract][Full Text] [Related]
14. A cryogenic radio-frequency ion trap for quantum logic spectroscopy of highly charged ions. Leopold T; King SA; Micke P; Bautista-Salvador A; Heip JC; Ospelkaus C; Crespo López-Urrutia JR; Schmidt PO Rev Sci Instrum; 2019 Jul; 90(7):073201. PubMed ID: 31370455 [TBL] [Abstract][Full Text] [Related]
15. High-temperature superconducting radiofrequency probe for magnetic resonance imaging applications operated below ambient pressure in a simple liquid-nitrogen cryostat. Lambert S; Ginefri JC; Poirier-Quinot M; Darrasse L Rev Sci Instrum; 2013 May; 84(5):054701. PubMed ID: 23742569 [TBL] [Abstract][Full Text] [Related]