These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 1899987)

  • 1. Local cerebral glucose utilization in rats with petit mal-like seizures.
    Nehlig A; Vergnes M; Marescaux C; Boyet S; Lannes B
    Ann Neurol; 1991 Jan; 29(1):72-7. PubMed ID: 1899987
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mapping of cerebral energy metabolism in rats with genetic generalized nonconvulsive epilepsy.
    Nehlig A; Vergnes M; Marescaux C; Boyet S
    J Neural Transm Suppl; 1992; 35():141-53. PubMed ID: 1512592
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Local cerebral metabolic rate for glucose during petit mal absences.
    Engel J; Lubens P; Kuhl DE; Phelps ME
    Ann Neurol; 1985 Feb; 17(2):121-8. PubMed ID: 3919636
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modifications of local cerebral glucose utilization in thalamic structures following injection of a dopaminergic agonist in the nucleus accumbens--involvement in antiepileptic effects?
    Riban V; Pereira de Vasconcelos A; Phâm-Lê BT; Ferrandon A; Marescaux C; Nehlig A; Depaulis A
    Exp Neurol; 2004 Aug; 188(2):452-60. PubMed ID: 15246844
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cerebral energy metabolism in rats with genetic absence epilepsy is not correlated with the pharmacological increase or suppression of spike-wave discharges.
    Nehlig A; Vergnes M; Marescaux C; Boyet S
    Brain Res; 1993 Jul; 618(1):1-8. PubMed ID: 8402164
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Local cerebral glucose utilization in adult and immature GAERS.
    Nehlig A; Vergnes M; Boyet S; Marescaux C
    Epilepsy Res; 1998 Sep; 32(1-2):206-12. PubMed ID: 9761321
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Cerebral glucose metabolism studied with (14C)-deoxyglucose method in experimental hydrocephalus].
    Wako N
    No To Shinkei; 1983 Jul; 35(7):693-701. PubMed ID: 6626386
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cerebral glucose metabolism in the Lennox-Gastaut syndrome.
    Theodore WH; Rose D; Patronas N; Sato S; Holmes M; Bairamian D; Porter RJ; Di Chiro G; Larson S; Fishbein D
    Ann Neurol; 1987 Jan; 21(1):14-21. PubMed ID: 3103526
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metabolic activity is increased in discrete brain regions before the occurrence of spike-and-wave discharges in weanling rats with genetic absence epilepsy.
    Nehlig A; Vergnes M; Boyet S; Marescaux C
    Brain Res Dev Brain Res; 1998 Jun; 108(1-2):69-75. PubMed ID: 9693785
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genetic threshold hypothesis of neocortical spike-and-wave discharges in the rat: an animal model of petit mal epilepsy.
    Vadász C; Carpi D; Jando G; Kandel A; Urioste R; Horváth Z; Pierre E; Vadi D; Fleischer A; Buzsáki G
    Am J Med Genet; 1995 Feb; 60(1):55-63. PubMed ID: 7485236
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Facilitation of spike-wave discharge activity by lipopolysaccharides in Wistar Albino Glaxo/Rijswijk rats.
    Kovács Z; Kékesi KA; Szilágyi N; Abrahám I; Székács D; Király N; Papp E; Császár I; Szego E; Barabás K; Péterfy H; Erdei A; Bártfai T; Juhász G
    Neuroscience; 2006 Jun; 140(2):731-42. PubMed ID: 16616432
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electroencephalographic characterization of spike-wave discharges in cortex and thalamus in WAG/Rij rats.
    Sitnikova E; van Luijtelaar G
    Epilepsia; 2007 Dec; 48(12):2296-311. PubMed ID: 18196621
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Local cerebral tissue glucose utilization in graded arterial hemorrhagic hypotension, studied by the 14C-2-deoxyglucose method in rats.
    Nádasy GL; Greenberg JH; Kovách AG; Reivich M
    Acta Physiol Hung; 1991; 78(1):43-54. PubMed ID: 1763651
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Uncoupling of cerebral blood flow and metabolism after cerebral contusion in the rat.
    Richards HK; Simac S; Piechnik S; Pickard JD
    J Cereb Blood Flow Metab; 2001 Jul; 21(7):779-81. PubMed ID: 11435789
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Haloperidol induces changes in the electrocorticogram of rats with genetic petit mal epilepsy].
    Midzianovskaia IS
    Zh Vyssh Nerv Deiat Im I P Pavlova; 1998; 48(6):1111-4. PubMed ID: 9929923
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Quantitative double tracer autoradiographic technique for the simultaneous measurement of local cerebral blood flow and local cerebral glucose utilization using 14C-IAP and 18F-FDG].
    Sako K; Kato A; Kobatake K; Diksic M; Yamamoto L; Yonemasu Y
    No To Shinkei; 1984 Jul; 36(7):649-56. PubMed ID: 6487434
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genetic animal models of epilepsy as a unique resource for the evaluation of anticonvulsant drugs. A review.
    Löscher W
    Methods Find Exp Clin Pharmacol; 1984 Sep; 6(9):531-47. PubMed ID: 6439966
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Principles of the 2-deoxyglucose method for the determination of the local cerebral glucose utilization.
    Wree A
    Eur J Morphol; 1990; 28(2-4):132-8. PubMed ID: 2245129
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Local cerebral glucose utilization in normal female rats: variations during the estrous cycle and comparison with males.
    Nehlig A; Porrino LJ; Crane AM; Sokoloff L
    J Cereb Blood Flow Metab; 1985 Sep; 5(3):393-400. PubMed ID: 4040921
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Lennox-Gastaut syndrome: metabolic subtypes determined by 2-deoxy-2[18F]fluoro-D-glucose positron emission tomography.
    Chugani HT; Mazziotta JC; Engel J; Phelps ME
    Ann Neurol; 1987 Jan; 21(1):4-13. PubMed ID: 3103528
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.