These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
519 related articles for article (PubMed ID: 19000003)
21. Response to stripe rust (Puccinia striiformis Westend. f. sp. tritici) and its coincidence with leaf rust resistance in hexaploid introgressive triticale lines with Triticum monococcum genes. Sodkiewicz W; Strzembicka A; Sodkiewicz T; Majewska M J Appl Genet; 2009; 50(3):205-11. PubMed ID: 19638675 [TBL] [Abstract][Full Text] [Related]
22. Large-Scale Cloning and Comparative Analysis of TaNAC Genes in Response to Stripe Rust and Powdery Mildew in Wheat ( Lv S; Guo H; Zhang M; Wang Q; Zhang H; Ji W Genes (Basel); 2020 Sep; 11(9):. PubMed ID: 32932603 [TBL] [Abstract][Full Text] [Related]
23. Identification of genomic regions controlling adult-plant stripe rust resistance in Chinese landrace Pingyuan 50 through bulked segregant analysis. Lan C; Liang S; Zhou X; Zhou G; Lu Q; Xia X; He Z Phytopathology; 2010 Apr; 100(4):313-8. PubMed ID: 20205534 [TBL] [Abstract][Full Text] [Related]
24. [Cloning and transcriptional profiling of a cell division cycle gene PsCdc2 from stripe rust fungus during incompatible and compatible interaction between wheat and Puccinia striiformis f. sp. tritici]. Dai X; Guo J; Chen Y; Duan Y; Xia N; Wei G; Huang L; Kang Z Wei Sheng Wu Xue Bao; 2010 Feb; 50(2):174-81. PubMed ID: 20387459 [TBL] [Abstract][Full Text] [Related]
25. Molecular cloning, characterization and mapping of a rhodanese like gene in wheat. Niu JS; Yu L; Ma ZQ; Chen PD; Liu DJ Yi Chuan Xue Bao; 2002; 29(3):266-72. PubMed ID: 12182084 [TBL] [Abstract][Full Text] [Related]
26. Genetics of resistance to wheat leaf rust, stem rust, and powdery mildew in Aegilops sharonensis. Olivera PD; Millet E; Anikster Y; Steffenson BJ Phytopathology; 2008 Mar; 98(3):353-8. PubMed ID: 18944087 [TBL] [Abstract][Full Text] [Related]
27. The wheat Mla homologue TmMla1 exhibits an evolutionarily conserved function against powdery mildew in both wheat and barley. Jordan T; Seeholzer S; Schwizer S; Töller A; Somssich IE; Keller B Plant J; 2011 Feb; 65(4):610-21. PubMed ID: 21208308 [TBL] [Abstract][Full Text] [Related]
28. Cloning, characterization and expression of wheat EDR1 (enhanced disease resistance) gene. Niu JS; Zhang LN; Hong DF; Wang YH Zhi Wu Sheng Li Yu Fen Zi Sheng Wu Xue Xue Bao; 2005 Oct; 31(5):477-84. PubMed ID: 16222089 [TBL] [Abstract][Full Text] [Related]
29. Resistance to stem rust race TTKSK maps to the rpg4/Rpg5 complex of chromosome 5H of barley. Steffenson BJ; Jin Y; Brueggeman RS; Kleinhofs A; Sun Y Phytopathology; 2009 Oct; 99(10):1135-41. PubMed ID: 19740026 [TBL] [Abstract][Full Text] [Related]
30. Identification of physiological races of Blumeria graminis f. sp. tritici and evaluation of powdery mildew resistance in wheat cultivars in Sistan province, Iran. Salari M; Okhovat SM; Sharifi-Tehrani A; Hedjaroude GA; Zad SJ; Mohammadi M Commun Agric Appl Biol Sci; 2003; 68(4 Pt B):549-53. PubMed ID: 15151289 [TBL] [Abstract][Full Text] [Related]
31. The Wheat Mediator Subunit TaMED25 Interacts with the Transcription Factor TaEIL1 to Negatively Regulate Disease Resistance against Powdery Mildew. Liu J; Zhang T; Jia J; Sun J Plant Physiol; 2016 Mar; 170(3):1799-816. PubMed ID: 26813794 [TBL] [Abstract][Full Text] [Related]
32. Assessment of genes controlling area under disease progress curve (AUDPC) for stripe rust (P. striiformis f. sp. tritici) in two wheat (Triticum aestivum L.) crosses. Irfaq M; Ajab M; Ma H; Khattak G Tsitol Genet; 2009; 43(4):25-38. PubMed ID: 19938644 [TBL] [Abstract][Full Text] [Related]
33. Evidence for increased aggressiveness in a recent widespread strain of Puccinia striiformis f. sp. tritici causing stripe rust of wheat. Milus EA; Kristensen K; Hovmøller MS Phytopathology; 2009 Jan; 99(1):89-94. PubMed ID: 19055439 [TBL] [Abstract][Full Text] [Related]
34. Molecular mapping of the novel powdery mildew resistance gene Pm36 introgressed from Triticum turgidum var. dicoccoides in durum wheat. Blanco A; Gadaleta A; Cenci A; Carluccio AV; Abdelbacki AM; Simeone R Theor Appl Genet; 2008 Jun; 117(1):135-42. PubMed ID: 18392800 [TBL] [Abstract][Full Text] [Related]
35. Molecular cytogenetics for a wheat-Aegilops geniculata 3M Wang Y; Cheng X; Yang X; Wang C; Zhang H; Deng P; Liu X; Chen C; Ji W; Wang Y BMC Plant Biol; 2021 Dec; 21(1):575. PubMed ID: 34872505 [TBL] [Abstract][Full Text] [Related]
36. [Genetic analysis and SSR mapping on an new stem stripe rust resistance gene YrY206 in Aegilops tauschii]. Zhang H; Lang J; Ma S; Zhang B Sheng Wu Gong Cheng Xue Bao; 2008 Aug; 24(8):1475-9. PubMed ID: 18998554 [TBL] [Abstract][Full Text] [Related]
37. Effect of the Penicillium chrysogenum antifungal protein (PAF) on barley powdery mildew and wheat leaf rust pathogens. Barna B; Leiter E; Hegedus N; Bíró T; Pócsi I J Basic Microbiol; 2008 Dec; 48(6):516-20. PubMed ID: 18798177 [TBL] [Abstract][Full Text] [Related]
38. Identification and genetic mapping of pm42, a new recessive wheat powdery mildew resistance gene derived from wild emmer (Triticum turgidum var. dicoccoides). Hua W; Liu Z; Zhu J; Xie C; Yang T; Zhou Y; Duan X; Sun Q; Liu Z Theor Appl Genet; 2009 Jul; 119(2):223-30. PubMed ID: 19407985 [TBL] [Abstract][Full Text] [Related]
39. Molecular analysis of three new receptor-like kinase genes from hexaploid wheat and evidence for their participation in the wheat hypersensitive response to stripe rust fungus infection. Zhou H; Li S; Deng Z; Wang X; Chen T; Zhang J; Chen S; Ling H; Zhang A; Wang D; Zhang X Plant J; 2007 Nov; 52(3):420-34. PubMed ID: 17764502 [TBL] [Abstract][Full Text] [Related]
40. Genetic analysis and molecular mapping of wheat genes conferring resistance to the wheat stripe rust and barley stripe rust pathogens. Pahalawatta V; Chen X Phytopathology; 2005 Apr; 95(4):427-32. PubMed ID: 18943046 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]