These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
271 related articles for article (PubMed ID: 19000196)
1. Relative contribution of AtHAK5 and AtAKT1 to K+ uptake in the high-affinity range of concentrations. Rubio F; Nieves-Cordones M; Alemán F; Martínez V Physiol Plant; 2008 Dec; 134(4):598-608. PubMed ID: 19000196 [TBL] [Abstract][Full Text] [Related]
2. Studies on Arabidopsis athak5, atakt1 double mutants disclose the range of concentrations at which AtHAK5, AtAKT1 and unknown systems mediate K uptake. Rubio F; Alemán F; Nieves-Cordones M; Martínez V Physiol Plant; 2010 Jun; 139(2):220-8. PubMed ID: 20088908 [TBL] [Abstract][Full Text] [Related]
3. A Ca(2+)-sensitive system mediates low-affinity K(+) uptake in the absence of AKT1 in Arabidopsis plants. Caballero F; Botella MA; Rubio L; Fernández JA; Martínez V; Rubio F Plant Cell Physiol; 2012 Dec; 53(12):2047-59. PubMed ID: 23054389 [TBL] [Abstract][Full Text] [Related]
4. The high affinity K+ transporter AtHAK5 plays a physiological role in planta at very low K+ concentrations and provides a caesium uptake pathway in Arabidopsis. Qi Z; Hampton CR; Shin R; Barkla BJ; White PJ; Schachtman DP J Exp Bot; 2008; 59(3):595-607. PubMed ID: 18281719 [TBL] [Abstract][Full Text] [Related]
5. High-affinity K(+) transport in Arabidopsis: AtHAK5 and AKT1 are vital for seedling establishment and postgermination growth under low-potassium conditions. Pyo YJ; Gierth M; Schroeder JI; Cho MH Plant Physiol; 2010 Jun; 153(2):863-75. PubMed ID: 20413648 [TBL] [Abstract][Full Text] [Related]
6. Root K(+) acquisition in plants: the Arabidopsis thaliana model. Alemán F; Nieves-Cordones M; Martínez V; Rubio F Plant Cell Physiol; 2011 Sep; 52(9):1603-12. PubMed ID: 21771865 [TBL] [Abstract][Full Text] [Related]
7. The potassium transporter AtHAK5 functions in K(+) deprivation-induced high-affinity K(+) uptake and AKT1 K(+) channel contribution to K(+) uptake kinetics in Arabidopsis roots. Gierth M; Mäser P; Schroeder JI Plant Physiol; 2005 Mar; 137(3):1105-14. PubMed ID: 15734909 [TBL] [Abstract][Full Text] [Related]
8. Capacity and plasticity of potassium channels and high-affinity transporters in roots of barley and Arabidopsis. Coskun D; Britto DT; Li M; Oh S; Kronzucker HJ Plant Physiol; 2013 May; 162(1):496-511. PubMed ID: 23553635 [TBL] [Abstract][Full Text] [Related]
9. The Arabidopsis thaliana HAK5 K+ transporter is required for plant growth and K+ acquisition from low K+ solutions under saline conditions. Nieves-Cordones M; Alemán F; Martínez V; Rubio F Mol Plant; 2010 Mar; 3(2):326-33. PubMed ID: 20028724 [TBL] [Abstract][Full Text] [Related]
11. AtDUR3 represents the major transporter for high-affinity urea transport across the plasma membrane of nitrogen-deficient Arabidopsis roots. Kojima S; Bohner A; Gassert B; Yuan L; von Wirén N Plant J; 2007 Oct; 52(1):30-40. PubMed ID: 17672841 [TBL] [Abstract][Full Text] [Related]
12. Arabidopsis K+ transporter HAK5-mediated high-affinity root K+ uptake is regulated by protein kinases CIPK1 and CIPK9. Lara A; Ródenas R; Andrés Z; Martínez V; Quintero FJ; Nieves-Cordones M; Botella MA; Rubio F J Exp Bot; 2020 Aug; 71(16):5053-5060. PubMed ID: 32484219 [TBL] [Abstract][Full Text] [Related]
13. Modulation of K Nieves-Cordones M; Lara A; Ródenas R; Amo J; Rivero RM; Martínez V; Rubio F Plant Cell Environ; 2019 Aug; 42(8):2357-2371. PubMed ID: 31046137 [TBL] [Abstract][Full Text] [Related]
14. Competition between uptake of ammonium and potassium in barley and Arabidopsis roots: molecular mechanisms and physiological consequences. ten Hoopen F; Cuin TA; Pedas P; Hegelund JN; Shabala S; Schjoerring JK; Jahn TP J Exp Bot; 2010 May; 61(9):2303-15. PubMed ID: 20339151 [TBL] [Abstract][Full Text] [Related]
15. Expression of KT/KUP genes in Arabidopsis and the role of root hairs in K+ uptake. Ahn SJ; Shin R; Schachtman DP Plant Physiol; 2004 Mar; 134(3):1135-45. PubMed ID: 14988478 [TBL] [Abstract][Full Text] [Related]
16. Potassium transport systems in the moss Physcomitrella patens: pphak1 plants reveal the complexity of potassium uptake. Garciadeblas B; Barrero-Gil J; Benito B; Rodríguez-Navarro A Plant J; 2007 Dec; 52(6):1080-93. PubMed ID: 17916113 [TBL] [Abstract][Full Text] [Related]
17. The Effect of AtHKT1;1 or AtSOS1 Mutation on the Expressions of Na⁺ or K⁺ Transporter Genes and Ion Homeostasis in Wang Q; Guan C; Wang P; Ma Q; Bao AK; Zhang JL; Wang SM Int J Mol Sci; 2019 Mar; 20(5):. PubMed ID: 30832374 [TBL] [Abstract][Full Text] [Related]
18. AtCIPK8, a CBL-interacting protein kinase, regulates the low-affinity phase of the primary nitrate response. Hu HC; Wang YY; Tsay YF Plant J; 2009 Jan; 57(2):264-78. PubMed ID: 18798873 [TBL] [Abstract][Full Text] [Related]
19. Potassium uptake supporting plant growth in the absence of AKT1 channel activity: Inhibition by ammonium and stimulation by sodium. Spalding EP; Hirsch RE; Lewis DR; Qi Z; Sussman MR; Lewis BD J Gen Physiol; 1999 Jun; 113(6):909-18. PubMed ID: 10352038 [TBL] [Abstract][Full Text] [Related]
20. A peroxidase contributes to ROS production during Arabidopsis root response to potassium deficiency. Kim MJ; Ciani S; Schachtman DP Mol Plant; 2010 Mar; 3(2):420-7. PubMed ID: 20139158 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]