These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
205 related articles for article (PubMed ID: 19000301)
1. Systemic resistance and lipoxygenase-related defence response induced in tomato by Pseudomonas putida strain BTP1. Akram A; Ongena M; Duby F; Dommes J; Thonart P BMC Plant Biol; 2008 Nov; 8():113. PubMed ID: 19000301 [TBL] [Abstract][Full Text] [Related]
2. The elicitation of a systemic resistance by Pseudomonas putida BTP1 in tomato involves the stimulation of two lipoxygenase isoforms. Mariutto M; Duby F; Adam A; Bureau C; Fauconnier ML; Ongena M; Thonart P; Dommes J BMC Plant Biol; 2011 Feb; 11():29. PubMed ID: 21294872 [TBL] [Abstract][Full Text] [Related]
3. Reprogramming of fatty acid and oxylipin synthesis in rhizobacteria-induced systemic resistance in tomato. Mariutto M; Fauconnier ML; Ongena M; Laloux M; Wathelet JP; du Jardin P; Thonart P; Dommes J Plant Mol Biol; 2014 Mar; 84(4-5):455-67. PubMed ID: 24146221 [TBL] [Abstract][Full Text] [Related]
4. Stimulation of the lipoxygenase pathway is associated with systemic resistance induced in bean by a nonpathogenic Pseudomonas strain. Ongena M; Duby F; Rossignol F; Fauconnier ML; Dommes J; Thonart P Mol Plant Microbe Interact; 2004 Sep; 17(9):1009-18. PubMed ID: 15384491 [TBL] [Abstract][Full Text] [Related]
5. Pseudomonas spp.-induced systemic resistance to Botrytis cinerea is associated with induction and priming of defence responses in grapevine. Verhagen BW; Trotel-Aziz P; Couderchet M; Höfte M; Aziz A J Exp Bot; 2010; 61(1):249-60. PubMed ID: 19812243 [TBL] [Abstract][Full Text] [Related]
6. Enhancing Botrytis disease management in tomato plants: insights from a Pseudomonas putida strain with biocontrol activity. Ampntelnour L; Poulaki EG; Dimitrakas V; Mavrommati M; Amourgis GG; Tjamos SE J Appl Microbiol; 2024 Apr; 135(4):. PubMed ID: 38599633 [TBL] [Abstract][Full Text] [Related]
7. Role of dioxygenase α-DOX2 and SA in basal response and in hexanoic acid-induced resistance of tomato (Solanum lycopersicum) plants against Botrytis cinerea. Angulo C; de la O Leyva M; Finiti I; López-Cruz J; Fernández-Crespo E; García-Agustín P; González-Bosch C J Plant Physiol; 2015 Mar; 175():163-73. PubMed ID: 25543862 [TBL] [Abstract][Full Text] [Related]
8. Priming by rhizobacterium protects tomato plants from biotrophic and necrotrophic pathogen infections through multiple defense mechanisms. Ahn IP; Lee SW; Kim MG; Park SR; Hwang DJ; Bae SC Mol Cells; 2011 Jul; 32(1):7-14. PubMed ID: 21710203 [TBL] [Abstract][Full Text] [Related]
9. Hexanoic acid protects tomato plants against Botrytis cinerea by priming defence responses and reducing oxidative stress. Finiti I; de la O Leyva M; Vicedo B; Gómez-Pastor R; López-Cruz J; García-Agustín P; Real MD; González-Bosch C Mol Plant Pathol; 2014 Aug; 15(6):550-62. PubMed ID: 24320938 [TBL] [Abstract][Full Text] [Related]
10. Systemic resistance to gray mold induced in tomato by benzothiadiazole and Trichoderma harzianum T39. Harel YM; Mehari ZH; Rav-David D; Elad Y Phytopathology; 2014 Feb; 104(2):150-7. PubMed ID: 24047252 [TBL] [Abstract][Full Text] [Related]
11. Amino acids, iron, and growth rate as key factors influencing production of the Pseudomonas putida BTP1 benzylamine derivative involved in systemic resistance induction in different plants. Ongena M; Jourdan E; Adam A; Schäfer M; Budzikiewicz H; Thonart P Microb Ecol; 2008 Feb; 55(2):280-92. PubMed ID: 17597337 [TBL] [Abstract][Full Text] [Related]
12. Systemic acquired resistance in sunflower (Helianthus annuus L.). Dmitriev A; Tena M; Jorrin J Tsitol Genet; 2003; 37(3):9-15. PubMed ID: 12945177 [TBL] [Abstract][Full Text] [Related]
13. Release of lipoxygenase products and monoterpenes by tomato plants as an indicator of Botrytis cinerea-induced stress. Jansen RM; Miebach M; Kleist E; van Henten EJ; Wildt J Plant Biol (Stuttg); 2009 Nov; 11(6):859-68. PubMed ID: 19796363 [TBL] [Abstract][Full Text] [Related]
14. Pseudomonas fluorescens PTA-CT2 Triggers Local and Systemic Immune Response Against Botrytis cinerea in Grapevine. Gruau C; Trotel-Aziz P; Villaume S; Rabenoelina F; Clément C; Baillieul F; Aziz A Mol Plant Microbe Interact; 2015 Oct; 28(10):1117-29. PubMed ID: 26075828 [TBL] [Abstract][Full Text] [Related]
15. Priming of camalexin accumulation in induced systemic resistance by beneficial bacteria against Botrytis cinerea and Pseudomonas syringae pv. tomato DC3000. Nguyen NH; Trotel-Aziz P; Villaume S; Rabenoelina F; Clément C; Baillieul F; Aziz A J Exp Bot; 2022 Jun; 73(11):3743-3757. PubMed ID: 35191984 [TBL] [Abstract][Full Text] [Related]
16. Effects of colonization of a bacterial endophyte, Azospirillum sp. B510, on disease resistance in tomato. Fujita M; Kusajima M; Okumura Y; Nakajima M; Minamisawa K; Nakashita H Biosci Biotechnol Biochem; 2017 Aug; 81(8):1657-1662. PubMed ID: 28569642 [TBL] [Abstract][Full Text] [Related]
17. Role of tomato lipoxygenase D in wound-induced jasmonate biosynthesis and plant immunity to insect herbivores. Yan L; Zhai Q; Wei J; Li S; Wang B; Huang T; Du M; Sun J; Kang L; Li CB; Li C PLoS Genet; 2013; 9(12):e1003964. PubMed ID: 24348260 [TBL] [Abstract][Full Text] [Related]
18. Osmotic stress-induced polyamine oxidation mediates defence responses and reduces stress-enhanced grapevine susceptibility to Botrytis cinerea. Hatmi S; Trotel-Aziz P; Villaume S; Couderchet M; Clément C; Aziz A J Exp Bot; 2014 Jan; 65(1):75-88. PubMed ID: 24170740 [TBL] [Abstract][Full Text] [Related]
19. BcGs1, a glycoprotein from Botrytis cinerea, elicits defence response and improves disease resistance in host plants. Zhang Y; Zhang Y; Qiu D; Zeng H; Guo L; Yang X Biochem Biophys Res Commun; 2015 Feb; 457(4):627-34. PubMed ID: 25613865 [TBL] [Abstract][Full Text] [Related]