These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
287 related articles for article (PubMed ID: 19000619)
1. Changes in gene expression of commercial baker's yeast during an air-drying process that simulates dried yeast production. Nakamura T; Mizukami-Murata S; Ando A; Murata Y; Takagi H; Shima J J Biosci Bioeng; 2008 Oct; 106(4):405-8. PubMed ID: 19000619 [TBL] [Abstract][Full Text] [Related]
2. Functional genomic analysis of commercial baker's yeast during initial stages of model dough-fermentation. Tanaka F; Ando A; Nakamura T; Takagi H; Shima J Food Microbiol; 2006 Dec; 23(8):717-28. PubMed ID: 16943074 [TBL] [Abstract][Full Text] [Related]
3. Identification of genes whose expressions are enhanced or reduced in baker's yeast during fed-batch culture process using molasses medium by DNA microarray analysis. Shima J; Kuwazaki S; Tanaka F; Watanabe H; Yamamoto H; Nakajima R; Tokashiki T; Tamura H Int J Food Microbiol; 2005 Jun; 102(1):63-71. PubMed ID: 15925003 [TBL] [Abstract][Full Text] [Related]
4. Antioxidant N-acetyltransferase Mpr1/2 of industrial baker's yeast enhances fermentation ability after air-drying stress in bread dough. Sasano Y; Takahashi S; Shima J; Takagi H Int J Food Microbiol; 2010 Mar; 138(1-2):181-5. PubMed ID: 20096471 [TBL] [Abstract][Full Text] [Related]
6. Genome-wide analysis of the effects of location and number of stress response elements on gene expression in Saccharomyces cerevisiae. Yoshikawa K; Furusawa C; Hirasawa T; Shimizu H J Biosci Bioeng; 2008 Nov; 106(5):507-10. PubMed ID: 19111649 [TBL] [Abstract][Full Text] [Related]
7. Genome-wide monitoring of wine yeast gene expression during alcoholic fermentation. Rossignol T; Dulau L; Julien A; Blondin B Yeast; 2003 Dec; 20(16):1369-85. PubMed ID: 14663829 [TBL] [Abstract][Full Text] [Related]
8. Mechanisms of copper toxicity in Saccharomyces cerevisiae determined by microarray analysis. Yasokawa D; Murata S; Kitagawa E; Iwahashi Y; Nakagawa R; Hashido T; Iwahashi H Environ Toxicol; 2008 Oct; 23(5):599-606. PubMed ID: 18528910 [TBL] [Abstract][Full Text] [Related]
9. Monitoring yeast physiology during very high gravity wort fermentations by frequent analysis of gene expression. Rautio JJ; Huuskonen A; Vuokko H; Vidgren V; Londesborough J Yeast; 2007 Sep; 24(9):741-60. PubMed ID: 17605133 [TBL] [Abstract][Full Text] [Related]
10. Expression profiling of the bottom fermenting yeast Saccharomyces pastorianus orthologous genes using oligonucleotide microarrays. Minato T; Yoshida S; Ishiguro T; Shimada E; Mizutani S; Kobayashi O; Yoshimoto H Yeast; 2009 Mar; 26(3):147-65. PubMed ID: 19243081 [TBL] [Abstract][Full Text] [Related]
11. Possible roles of vacuolar H+-ATPase and mitochondrial function in tolerance to air-drying stress revealed by genome-wide screening of Saccharomyces cerevisiae deletion strains. Shima J; Ando A; Takagi H Yeast; 2008 Mar; 25(3):179-90. PubMed ID: 18224659 [TBL] [Abstract][Full Text] [Related]
12. Saccharomyces cerevisiae and DNA microarray analyses: what did we learn from it for a better understanding and exploitation of yeast biotechnology? Hirasawa T; Furusawa C; Shimizu H Appl Microbiol Biotechnol; 2010 Jun; 87(2):391-400. PubMed ID: 20414652 [TBL] [Abstract][Full Text] [Related]
13. Early transcriptional response of wine yeast after rehydration: osmotic shock and metabolic activation. Novo M; Beltran G; Rozes N; Guillamon JM; Sokol S; Leberre V; François J; Mas A FEMS Yeast Res; 2007 Mar; 7(2):304-16. PubMed ID: 17132143 [TBL] [Abstract][Full Text] [Related]
14. Toxicogenomics using yeast DNA microarrays. Yasokawa D; Iwahashi H J Biosci Bioeng; 2010 Nov; 110(5):511-22. PubMed ID: 20624688 [TBL] [Abstract][Full Text] [Related]
15. Validation of a flour-free model dough system for throughput studies of baker's yeast. Panadero J; Randez-Gil F; Prieto JA Appl Environ Microbiol; 2005 Mar; 71(3):1142-7. PubMed ID: 15746311 [TBL] [Abstract][Full Text] [Related]
16. Multiple mechanisms regulate expression of low temperature responsive (LOT) genes in Saccharomyces cerevisiae. Zhang L; Ohta A; Horiuchi H; Takagi M; Imai R Biochem Biophys Res Commun; 2001 May; 283(2):531-5. PubMed ID: 11327734 [TBL] [Abstract][Full Text] [Related]
17. Toxicity of methanol and formaldehyde towards Saccharomyces cerevisiae as assessed by DNA microarray analysis. Yasokawa D; Murata S; Iwahashi Y; Kitagawa E; Nakagawa R; Hashido T; Iwahashi H Appl Biochem Biotechnol; 2010 Mar; 160(6):1685-98. PubMed ID: 19499198 [TBL] [Abstract][Full Text] [Related]
18. Analysis of the genomic response of a wine yeast to rehydration and inoculation. Rossignol T; Postaire O; Storaï J; Blondin B Appl Microbiol Biotechnol; 2006 Aug; 71(5):699-712. PubMed ID: 16607525 [TBL] [Abstract][Full Text] [Related]
19. Rapid identification of target genes for 3-methyl-1-butanol production in Saccharomyces cerevisiae. Schoondermark-Stolk SA; Jansen M; Veurink JH; Verkleij AJ; Verrips CT; Euverink GJ; Boonstra J; Dijkhuizen L Appl Microbiol Biotechnol; 2006 Mar; 70(2):237-46. PubMed ID: 16041576 [TBL] [Abstract][Full Text] [Related]