BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 19000929)

  • 1. A dual-scale approach toward structure prediction of retinal proteins.
    Chen CC; Chen CM
    J Struct Biol; 2009 Jan; 165(1):37-46. PubMed ID: 19000929
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Packing of transmembrane helices in bacteriorhodopsin folding: structure and thermodynamics.
    Chen CC; Wei CC; Sun YC; Chen CM
    J Struct Biol; 2008 May; 162(2):237-47. PubMed ID: 18262435
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ab initio computational modeling of loops in G-protein-coupled receptors: lessons from the crystal structure of rhodopsin.
    Mehler EL; Hassan SA; Kortagere S; Weinstein H
    Proteins; 2006 Aug; 64(3):673-90. PubMed ID: 16729264
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simulations of a G protein-coupled receptor homology model predict dynamic features and a ligand binding site.
    Wolf S; Böckmann M; Höweler U; Schlitter J; Gerwert K
    FEBS Lett; 2008 Oct; 582(23-24):3335-42. PubMed ID: 18775703
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrostatic potential at the retinal of three archaeal rhodopsins: implications for their different absorption spectra.
    Kloppmann E; Becker T; Ullmann GM
    Proteins; 2005 Dec; 61(4):953-65. PubMed ID: 16247786
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modeling of halorhodopsin and rhodopsin based on bacteriorhodopsin.
    Neumüller M; Jähnig F
    Proteins; 1996 Oct; 26(2):146-56. PubMed ID: 8916222
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of stability predictions and simulated unfolding of rhodopsin structures.
    Tastan O; Yu E; Ganapathiraju M; Aref A; Rader AJ; Klein-Seetharaman J
    Photochem Photobiol; 2007; 83(2):351-62. PubMed ID: 17576347
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Replica exchange Monte-Carlo simulations of helix bundle membrane proteins: rotational parameters of helices.
    Wu HH; Chen CC; Chen CM
    J Comput Aided Mol Des; 2012 Mar; 26(3):363-74. PubMed ID: 22466784
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Assembly of transmembrane helices of simple polytopic membrane proteins from sequence conservation patterns.
    Park Y; Helms V
    Proteins; 2006 Sep; 64(4):895-905. PubMed ID: 16807902
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Homology modeling and molecular dynamics simulations of the mu opioid receptor in a membrane-aqueous system.
    Zhang Y; Sham YY; Rajamani R; Gao J; Portoghese PS
    Chembiochem; 2005 May; 6(5):853-9. PubMed ID: 15776407
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Three-dimensional model for meta-II rhodopsin, an activated G-protein-coupled receptor.
    Nikiforovich GV; Marshall GR
    Biochemistry; 2003 Aug; 42(30):9110-20. PubMed ID: 12885244
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Novel approach to computer modeling of seven-helical transmembrane proteins: current progress in the test case of bacteriorhodopsin.
    Nikiforovich GV; Galaktionov S; Balodis J; Marshall GR
    Acta Biochim Pol; 2001; 48(1):53-64. PubMed ID: 11440183
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of the predicted secondary structure of bacteriorhodopsin. Prediction of the bovine rhodopsin secondary structure and its sequence similarity with bacteriorhodopsin.
    Nero TL; Louis WJ
    Biochem Int; 1992 Aug; 27(5):763-70. PubMed ID: 1417909
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Method to assess packing quality of transmembrane alpha-helices in proteins. 2. Validation by "correct vs misleading" test.
    Chugunov AO; Novoseletsky VN; Nolde DE; Arseniev AS; Efremov RG
    J Chem Inf Model; 2007; 47(3):1163-70. PubMed ID: 17371006
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A coarse-grained protein force field for folding and structure prediction.
    Maupetit J; Tuffery P; Derreumaux P
    Proteins; 2007 Nov; 69(2):394-408. PubMed ID: 17600832
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evolutionary patterns of retinal-binding pockets of type I rhodopsins and their functions.
    Adamian L; Ouyang Z; Tseng YY; Liang J
    Photochem Photobiol; 2006; 82(6):1426-35. PubMed ID: 16922602
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Membrane protein structure quality in molecular dynamics simulation.
    Law RJ; Capener C; Baaden M; Bond PJ; Campbell J; Patargias G; Arinaminpathy Y; Sansom MS
    J Mol Graph Model; 2005 Oct; 24(2):157-65. PubMed ID: 16102990
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular modeling of A1 and A2A adenosine receptors: comparison of rhodopsin- and beta2-adrenergic-based homology models through the docking studies.
    Yuzlenko O; Kieć-Kononowicz K
    J Comput Chem; 2009 Jan; 30(1):14-32. PubMed ID: 18496794
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Computational development of an alpha1A-adrenoceptor model in a membrane mimic.
    Kinsella GK; Rozas I; Watson GW
    Biochem Biophys Res Commun; 2004 Nov; 324(2):916-21. PubMed ID: 15474515
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Crystal structure of squid rhodopsin.
    Murakami M; Kouyama T
    Nature; 2008 May; 453(7193):363-7. PubMed ID: 18480818
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.