BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 19000929)

  • 21. The retinal conformation and its environment in rhodopsin in light of a new 2.2 A crystal structure.
    Okada T; Sugihara M; Bondar AN; Elstner M; Entel P; Buss V
    J Mol Biol; 2004 Sep; 342(2):571-83. PubMed ID: 15327956
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Predisposition of the dark state of rhodopsin to functional changes in structure.
    Isin B; Rader AJ; Dhiman HK; Klein-Seetharaman J; Bahar I
    Proteins; 2006 Dec; 65(4):970-83. PubMed ID: 17009319
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Importance of specific hydrogen bonds of archaeal rhodopsins for the binding to the transducer protein.
    Sudo Y; Yamabi M; Kato S; Hasegawa C; Iwamoto M; Shimono K; Kamo N
    J Mol Biol; 2006 Apr; 357(4):1274-82. PubMed ID: 16483604
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Structural changes of Salinibacter sensory rhodopsin I upon formation of the K and M photointermediates.
    Suzuki D; Sudo Y; Furutani Y; Takahashi H; Homma M; Kandori H
    Biochemistry; 2008 Dec; 47(48):12750-9. PubMed ID: 18991393
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Coarse-grained simulation: a high-throughput computational approach to membrane proteins.
    Sansom MS; Scott KA; Bond PJ
    Biochem Soc Trans; 2008 Feb; 36(Pt 1):27-32. PubMed ID: 18208379
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Crystals of native and modified bovine rhodopsins and their heavy atom derivatives.
    Edwards PC; Li J; Burghammer M; McDowell JH; Villa C; Hargrave PA; Schertler GF
    J Mol Biol; 2004 Nov; 343(5):1439-50. PubMed ID: 15491622
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Expanding GPCR homology model binding sites via a balloon potential: A molecular dynamics refinement approach.
    Kimura SR; Tebben AJ; Langley DR
    Proteins; 2008 Jun; 71(4):1919-29. PubMed ID: 18175323
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Structure of bovine rhodopsin in a trigonal crystal form.
    Li J; Edwards PC; Burghammer M; Villa C; Schertler GF
    J Mol Biol; 2004 Nov; 343(5):1409-38. PubMed ID: 15491621
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Crystal structure of the ligand-free G-protein-coupled receptor opsin.
    Park JH; Scheerer P; Hofmann KP; Choe HW; Ernst OP
    Nature; 2008 Jul; 454(7201):183-7. PubMed ID: 18563085
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Helix-helix interactions in membrane proteins: coarse-grained simulations of glycophorin a helix dimerization.
    Psachoulia E; Fowler PW; Bond PJ; Sansom MS
    Biochemistry; 2008 Oct; 47(40):10503-12. PubMed ID: 18783247
    [TBL] [Abstract][Full Text] [Related]  

  • 31. [Studies on the conformational state of the chromophore group (11-cis-retinal) in rhodopsin by computer molecular simulation methods].
    Fel'dman TB; Kholmurodov KhT; Ostrovskiĭ MA; Khrenova MG; Nemukhin AV
    Biofizika; 2009; 54(4):660-7. PubMed ID: 19795787
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Modelling of third cytoplasmic loop of bovine rhodopsin by multicanonical molecular dynamics.
    Watanabe YS; Fukunishi Y; Nakamura H
    J Mol Graph Model; 2004 Sep; 23(1):59-68. PubMed ID: 15331054
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Network pattern of residue packing in helical membrane proteins and its application in membrane protein structure prediction.
    Pabuwal V; Li Z
    Protein Eng Des Sel; 2008 Jan; 21(1):55-64. PubMed ID: 18178566
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Structural divergence and functional versatility of the rhodopsin superfamily.
    Kouyama T; Murakami M
    Photochem Photobiol Sci; 2010 Nov; 9(11):1458-65. PubMed ID: 20931138
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Method to assess packing quality of transmembrane alpha-helices in proteins. 1. Parametrization using structural data.
    Chugunov AO; Novoseletsky VN; Nolde DE; Arseniev AS; Efremov RG
    J Chem Inf Model; 2007; 47(3):1150-62. PubMed ID: 17371005
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Protein design: reengineering cellular retinoic acid binding protein II into a rhodopsin protein mimic.
    Vasileiou C; Vaezeslami S; Crist RM; Rabago-Smith M; Geiger JH; Borhan B
    J Am Chem Soc; 2007 May; 129(19):6140-8. PubMed ID: 17447762
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Color tuning in rhodopsins: the mechanism for the spectral shift between bacteriorhodopsin and sensory rhodopsin II.
    Hoffmann M; Wanko M; Strodel P; König PH; Frauenheim T; Schulten K; Thiel W; Tajkhorshid E; Elstner M
    J Am Chem Soc; 2006 Aug; 128(33):10808-18. PubMed ID: 16910676
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Improved model building and assessment of the Calcium-sensing receptor transmembrane domain.
    Bu L; Michino M; Wolf RM; Brooks CL
    Proteins; 2008 Apr; 71(1):215-26. PubMed ID: 17932932
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Computer simulations of the refolding of sperm whale apomyoglobin from high-temperature denaturated state.
    Dametto M; Cárdenas AE
    J Phys Chem B; 2008 Aug; 112(31):9501-6. PubMed ID: 18616314
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Spectral tuning in sensory rhodopsin I from Salinibacter ruber.
    Sudo Y; Yuasa Y; Shibata J; Suzuki D; Homma M
    J Biol Chem; 2011 Apr; 286(13):11328-36. PubMed ID: 21288897
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.