BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 19001045)

  • 1. Roles of axonal sodium channels in precise auditory time coding at nucleus magnocellularis of the chick.
    Kuba H; Ohmori H
    J Physiol; 2009 Jan; 587(1):87-100. PubMed ID: 19001045
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural tuning and plasticity of the axon initial segment in auditory neurons.
    Kuba H
    J Physiol; 2012 Nov; 590(22):5571-9. PubMed ID: 23027822
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Excitatory-Inhibitory Synaptic Coupling in Avian Nucleus Magnocellularis.
    Al-Yaari M; Yamada R; Kuba H
    J Neurosci; 2020 Jan; 40(3):619-631. PubMed ID: 31727796
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Resurgent sodium current promotes action potential firing in the avian auditory brainstem.
    Hong H; Lu T; Wang X; Wang Y; Sanchez JT
    J Physiol; 2018 Feb; 596(3):423-443. PubMed ID: 29193076
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tonotopic Optimization for Temporal Processing in the Cochlear Nucleus.
    Oline SN; Ashida G; Burger RM
    J Neurosci; 2016 Aug; 36(32):8500-15. PubMed ID: 27511020
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Low Somatic Sodium Conductance Enhances Action Potential Precision in Time-Coding Auditory Neurons.
    Yang Y; Ramamurthy B; Neef A; Xu-Friedman MA
    J Neurosci; 2016 Nov; 36(47):11999-12009. PubMed ID: 27881784
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improvement of phase information at low sound frequency in nucleus magnocellularis of the chicken.
    Fukui I; Sato T; Ohmori H
    J Neurophysiol; 2006 Aug; 96(2):633-41. PubMed ID: 16687616
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ion channel mechanisms underlying frequency-firing patterns of the avian nucleus magnocellularis: A computational model.
    Lu T; Wade K; Hong H; Sanchez JT
    Channels (Austin); 2017 Sep; 11(5):444-458. PubMed ID: 28481659
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Voltage-gated ionic currents and their roles in timing coding in auditory neurons of the nucleus magnocellularis of the chick.
    Koyano K; Funabiki K; Ohmori H
    Neurosci Res; 1996 Sep; 26(1):29-45. PubMed ID: 8895890
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Adaptation of spike timing precision controls the sensitivity to interaural time difference in the avian auditory brainstem.
    Higgs MH; Kuznetsova MS; Spain WJ
    J Neurosci; 2012 Oct; 32(44):15489-94. PubMed ID: 23115186
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tonotopic Variation of the T-Type Ca
    Fukaya R; Yamada R; Kuba H
    J Neurosci; 2018 Jan; 38(2):335-346. PubMed ID: 29167400
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biophysical mechanism of spike threshold dependence on the rate of rise of the membrane potential by sodium channel inactivation or subthreshold axonal potassium current.
    Wester JC; Contreras D
    J Comput Neurosci; 2013 Aug; 35(1):1-17. PubMed ID: 23344915
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Intrinsic firing properties in the avian auditory brain stem allow both integration and encoding of temporally modulated noisy inputs in vitro.
    Kreeger LJ; Arshed A; MacLeod KM
    J Neurophysiol; 2012 Nov; 108(10):2794-809. PubMed ID: 22914650
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Subthreshold frequency selectivity in avian auditory thalamus.
    Ströhmann B; Schwarz DW; Puil E
    J Neurophysiol; 1994 Apr; 71(4):1361-72. PubMed ID: 8035220
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Distinct Neural Properties in the Low-Frequency Region of the Chicken Cochlear Nucleus Magnocellularis.
    Wang X; Hong H; Brown DH; Sanchez JT; Wang Y
    eNeuro; 2017; 4(2):. PubMed ID: 28413822
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Axonal Na+ channels ensure fast spike activation and back-propagation in cerebellar granule cells.
    Diwakar S; Magistretti J; Goldfarb M; Naldi G; D'Angelo E
    J Neurophysiol; 2009 Feb; 101(2):519-32. PubMed ID: 19073816
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Autonomous initiation and propagation of action potentials in neurons of the subthalamic nucleus.
    Atherton JF; Wokosin DL; Ramanathan S; Bevan MD
    J Physiol; 2008 Dec; 586(23):5679-700. PubMed ID: 18832425
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synaptic physiology in the cochlear nucleus angularis of the chick.
    MacLeod KM; Carr CE
    J Neurophysiol; 2005 May; 93(5):2520-9. PubMed ID: 15615833
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spike threshold adaptation diversifies neuronal operating modes in the auditory brain stem.
    Lubejko ST; Fontaine B; Soueidan SE; MacLeod KM
    J Neurophysiol; 2019 Dec; 122(6):2576-2590. PubMed ID: 31577531
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Early development of intrinsic and synaptic properties of chicken nucleus laminaris neurons.
    Gao H; Lu Y
    Neuroscience; 2008 Apr; 153(1):131-43. PubMed ID: 18355968
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.