These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
495 related articles for article (PubMed ID: 19001094)
1. The antioxidant defense system Keap1-Nrf2 comprises a multiple sensing mechanism for responding to a wide range of chemical compounds. Kobayashi M; Li L; Iwamoto N; Nakajima-Takagi Y; Kaneko H; Nakayama Y; Eguchi M; Wada Y; Kumagai Y; Yamamoto M Mol Cell Biol; 2009 Jan; 29(2):493-502. PubMed ID: 19001094 [TBL] [Abstract][Full Text] [Related]
2. Nitro-fatty acids and cyclopentenone prostaglandins share strategies to activate the Keap1-Nrf2 system: a study using green fluorescent protein transgenic zebrafish. Tsujita T; Li L; Nakajima H; Iwamoto N; Nakajima-Takagi Y; Ohashi K; Kawakami K; Kumagai Y; Freeman BA; Yamamoto M; Kobayashi M Genes Cells; 2011 Jan; 16(1):46-57. PubMed ID: 21143560 [TBL] [Abstract][Full Text] [Related]
3. Identification of compounds that inhibit the binding of Keap1a/Keap1b Kelch DGR domain with Nrf2 ETGE/DLG motifs in zebrafish. Raghunath A; Nagarajan R; Sundarraj K; Palanisamy K; Perumal E Basic Clin Pharmacol Toxicol; 2019 Sep; 125(3):259-270. PubMed ID: 30861618 [TBL] [Abstract][Full Text] [Related]
4. Cellular mechanisms of redox cell signalling: role of cysteine modification in controlling antioxidant defences in response to electrophilic lipid oxidation products. Levonen AL; Landar A; Ramachandran A; Ceaser EK; Dickinson DA; Zanoni G; Morrow JD; Darley-Usmar VM Biochem J; 2004 Mar; 378(Pt 2):373-82. PubMed ID: 14616092 [TBL] [Abstract][Full Text] [Related]
5. Role of Nrf2 antioxidant defense in mitigating cadmium-induced oxidative stress in the olfactory system of zebrafish. Wang L; Gallagher EP Toxicol Appl Pharmacol; 2013 Jan; 266(2):177-86. PubMed ID: 23174481 [TBL] [Abstract][Full Text] [Related]
7. Genetic hyperactivation of Nrf2 causes larval lethality in Keap1a and Keap1b-double-knockout zebrafish. Bian L; Nguyen VT; Tamaoki J; Endo Y; Dong G; Sato A; Kobayashi M Redox Biol; 2023 Jun; 62():102673. PubMed ID: 36934645 [TBL] [Abstract][Full Text] [Related]
8. Generation and characterization of keap1a- and keap1b-knockout zebrafish. Nguyen VT; Bian L; Tamaoki J; Otsubo S; Muratani M; Kawahara A; Kobayashi M Redox Biol; 2020 Sep; 36():101667. PubMed ID: 32828016 [TBL] [Abstract][Full Text] [Related]
9. Molecular evolution of Keap1. Two Keap1 molecules with distinctive intervening region structures are conserved among fish. Li L; Kobayashi M; Kaneko H; Nakajima-Takagi Y; Nakayama Y; Yamamoto M J Biol Chem; 2008 Feb; 283(6):3248-3255. PubMed ID: 18057000 [TBL] [Abstract][Full Text] [Related]
10. Nrf2 and Nrf2-related proteins in development and developmental toxicity: Insights from studies in zebrafish (Danio rerio). Hahn ME; Timme-Laragy AR; Karchner SI; Stegeman JJ Free Radic Biol Med; 2015 Nov; 88(Pt B):275-289. PubMed ID: 26130508 [TBL] [Abstract][Full Text] [Related]
11. Molecular mechanism activating Nrf2-Keap1 pathway in regulation of adaptive response to electrophiles. Itoh K; Tong KI; Yamamoto M Free Radic Biol Med; 2004 May; 36(10):1208-13. PubMed ID: 15110385 [TBL] [Abstract][Full Text] [Related]
12. Review of molecular mechanisms involved in the activation of the Nrf2-ARE signaling pathway by chemopreventive agents. Giudice A; Arra C; Turco MC Methods Mol Biol; 2010; 647():37-74. PubMed ID: 20694660 [TBL] [Abstract][Full Text] [Related]
13. Antioxidant responses and NRF2 in synergistic developmental toxicity of PAHs in zebrafish. Timme-Laragy AR; Van Tiem LA; Linney EA; Di Giulio RT Toxicol Sci; 2009 Jun; 109(2):217-27. PubMed ID: 19233942 [TBL] [Abstract][Full Text] [Related]
14. Discovery of the negative regulator of Nrf2, Keap1: a historical overview. Itoh K; Mimura J; Yamamoto M Antioxid Redox Signal; 2010 Dec; 13(11):1665-78. PubMed ID: 20446768 [TBL] [Abstract][Full Text] [Related]
15. Activation of the Nrf2/ARE pathway via S-alkylation of cysteine 151 in the chemopreventive agent-sensor Keap1 protein by falcarindiol, a conjugated diacetylene compound. Ohnuma T; Nakayama S; Anan E; Nishiyama T; Ogura K; Hiratsuka A Toxicol Appl Pharmacol; 2010 Apr; 244(1):27-36. PubMed ID: 20026152 [TBL] [Abstract][Full Text] [Related]
16. Role of Nrf2 in the antioxidation and oxidative stress induced developmental toxicity of honokiol in zebrafish. Li H; Zhang Q; Li W; Li H; Bao J; Yang C; Wang A; Wei J; Chen S; Jin H Toxicol Appl Pharmacol; 2019 Jun; 373():48-61. PubMed ID: 31022495 [TBL] [Abstract][Full Text] [Related]
17. Nrf2 activation attenuates genetic endoplasmic reticulum stress induced by a mutation in the phosphomannomutase 2 gene in zebrafish. Mukaigasa K; Tsujita T; Nguyen VT; Li L; Yagi H; Fuse Y; Nakajima-Takagi Y; Kato K; Yamamoto M; Kobayashi M Proc Natl Acad Sci U S A; 2018 Mar; 115(11):2758-2763. PubMed ID: 29472449 [TBL] [Abstract][Full Text] [Related]
18. Synthesis, evaluation, and metabolism of novel [6]-shogaol derivatives as potent Nrf2 activators. Zhu Y; Wang P; Zhao Y; Yang C; Clark A; Leung T; Chen X; Sang S Free Radic Biol Med; 2016 Jun; 95():243-54. PubMed ID: 27021962 [TBL] [Abstract][Full Text] [Related]
19. Activation of Akt and JNK/Nrf2/NQO1 pathway contributes to the protective effect of coptisine against AAPH-induced oxidative stress. Hu YR; Ma H; Zou ZY; He K; Xiao YB; Wang Y; Feng M; Ye XL; Li XG Biomed Pharmacother; 2017 Jan; 85():313-322. PubMed ID: 27903425 [TBL] [Abstract][Full Text] [Related]
20. Keap1-dependent proteasomal degradation of transcription factor Nrf2 contributes to the negative regulation of antioxidant response element-driven gene expression. McMahon M; Itoh K; Yamamoto M; Hayes JD J Biol Chem; 2003 Jun; 278(24):21592-600. PubMed ID: 12682069 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]