BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

289 related articles for article (PubMed ID: 19001143)

  • 1. Long-pore electrostatics in inward-rectifier potassium channels.
    Robertson JL; Palmer LG; Roux B
    J Gen Physiol; 2008 Dec; 132(6):613-32. PubMed ID: 19001143
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multi-ion distributions in the cytoplasmic domain of inward rectifier potassium channels.
    Robertson JL; Palmer LG; Roux B
    Biophys J; 2012 Aug; 103(3):434-443. PubMed ID: 22947859
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrostatics in the cytoplasmic pore produce intrinsic inward rectification in kir2.1 channels.
    Yeh SH; Chang HK; Shieh RC
    J Gen Physiol; 2005 Dec; 126(6):551-62. PubMed ID: 16316974
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Conformational changes at cytoplasmic intersubunit interactions control Kir channel gating.
    Wang S; Borschel WF; Heyman S; Hsu P; Nichols CG
    J Biol Chem; 2017 Jun; 292(24):10087-10096. PubMed ID: 28446610
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Functional roles of charged amino acid residues on the wall of the cytoplasmic pore of Kir2.1.
    Fujiwara Y; Kubo Y
    J Gen Physiol; 2006 Apr; 127(4):401-19. PubMed ID: 16533896
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrostatics of the intracellular vestibule of K+ channels.
    Jogini V; Roux B
    J Mol Biol; 2005 Nov; 354(2):272-88. PubMed ID: 16242718
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular and functional characterization of inwardly rectifying K
    Huang X; Lee SH; Lu H; Sanders KM; Koh SD
    J Physiol; 2018 Feb; 596(3):379-391. PubMed ID: 29205356
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A small viral potassium ion channel with an inherent inward rectification.
    Eckert D; Schulze T; Stahl J; Rauh O; Van Etten JL; Hertel B; Schroeder I; Moroni A; Thiel G
    Channels (Austin); 2019 Dec; 13(1):124-135. PubMed ID: 31010373
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Long polyamines act as cofactors in PIP2 activation of inward rectifier potassium (Kir2.1) channels.
    Xie LH; John SA; Ribalet B; Weiss JN
    J Gen Physiol; 2005 Dec; 126(6):541-9. PubMed ID: 16316973
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Screening Technologies for Inward Rectifier Potassium Channels: Discovery of New Blockers and Activators.
    Walsh KB
    SLAS Discov; 2020 Jun; 25(5):420-433. PubMed ID: 32292089
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Conformational changes underlying pore dilation in the cytoplasmic domain of mammalian inward rectifier K+ channels.
    Inanobe A; Nakagawa A; Kurachi Y
    PLoS One; 2013; 8(11):e79844. PubMed ID: 24244570
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cytoplasmic domain structures of Kir2.1 and Kir3.1 show sites for modulating gating and rectification.
    Pegan S; Arrabit C; Zhou W; Kwiatkowski W; Collins A; Slesinger PA; Choe S
    Nat Neurosci; 2005 Mar; 8(3):279-87. PubMed ID: 15723059
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Conformational changes upon gating of KirBac1.1 into an open-activated state revealed by solid-state NMR and functional assays.
    Amani R; Borcik CG; Khan NH; Versteeg DB; Yekefallah M; Do HQ; Coats HR; Wylie BJ
    Proc Natl Acad Sci U S A; 2020 Feb; 117(6):2938-2947. PubMed ID: 31980523
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Conformational dynamics of the ligand-binding domain of inward rectifier K channels as revealed by molecular dynamics simulations: toward an understanding of Kir channel gating.
    Haider S; Grottesi A; Hall BA; Ashcroft FM; Sansom MS
    Biophys J; 2005 May; 88(5):3310-20. PubMed ID: 15749783
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gating and modulation of an inward-rectifier potassium channel.
    Jogini V; Jensen MØ; Shaw DE
    J Gen Physiol; 2023 Feb; 155(2):. PubMed ID: 36524993
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Polyamines as gating molecules of inward-rectifier K+ channels.
    Oliver D; Baukrowitz T; Fakler B
    Eur J Biochem; 2000 Oct; 267(19):5824-9. PubMed ID: 10998040
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanisms for Kir channel inhibition by quinacrine: acute pore block of Kir2.x channels and interference in PIP2 interaction with Kir2.x and Kir6.2 channels.
    López-Izquierdo A; Aréchiga-Figueroa IA; Moreno-Galindo EG; Ponce-Balbuena D; Rodríguez-Martínez M; Ferrer-Villada T; Rodríguez-Menchaca AA; van der Heyden MA; Sánchez-Chapula JA
    Pflugers Arch; 2011 Oct; 462(4):505-17. PubMed ID: 21779761
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The pore helix dipole has a minor role in inward rectifier channel function.
    Chatelain FC; Alagem N; Xu Q; Pancaroglu R; Reuveny E; Minor DL
    Neuron; 2005 Sep; 47(6):833-43. PubMed ID: 16157278
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Atomistic basis of opening and conduction in mammalian inward rectifier potassium (Kir2.2) channels.
    Zangerl-Plessl EM; Lee SJ; Maksaev G; Bernsteiner H; Ren F; Yuan P; Stary-Weinzinger A; Nichols CG
    J Gen Physiol; 2020 Jan; 152(1):. PubMed ID: 31744859
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regulation of Kir channels by intracellular pH and extracellular K(+): mechanisms of coupling.
    Dahlmann A; Li M; Gao Z; McGarrigle D; Sackin H; Palmer LG
    J Gen Physiol; 2004 Apr; 123(4):441-54. PubMed ID: 15051808
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.