These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 190012)

  • 1. 2-Deoxy-D-galactose metabolism in ascites hepatoma cells results in phosphate trapping and glycolysis inhibition.
    Smith DF; Keppler DO
    Eur J Biochem; 1977 Feb; 73(1):83-92. PubMed ID: 190012
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Uridine triphosphate deficiency, growth inhibition, and death in ascites hepatoma cells induced by a combination of pyrimidine biosynthesis inhibition with uridylate trapping.
    Keppler DO
    Cancer Res; 1977 Mar; 37(3):911-7. PubMed ID: 189918
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Metabolism and actions of 2-deoxy-2-fluoro-D-galactose in vivo.
    Grün BR; Berger U; Oberdorfer F; Hull WE; Ostertag H; Friedrich E; Lehmann J; Keppler D
    Eur J Biochem; 1990 May; 190(1):11-9. PubMed ID: 2114284
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Consequences of recurrent phosphate trapping induced by repeated injections of 2-deoxy-D-galactose. Biochemical and morphological studies in rats.
    Lattke H; Koch HK; Lesch R; Keppler DO
    Virchows Arch B Cell Pathol Incl Mol Pathol; 1979 Jun; 30(3):297-312. PubMed ID: 43010
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transport of 2-deoxy-D-galactose in Saccharomyces fragilis.
    Jaspers HT; Van Steveninck J
    Biochim Biophys Acta; 1976 Aug; 443(2):243-53. PubMed ID: 953017
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Accumulation of 2-deoxy-2-[18F]fluoro-D-galactose in the liver by phosphate and uridylate trapping.
    Ishiwata K; Ido T; Imahori Y; Yamaguchi K; Fukuda H; Tada M; Matsuzawa T
    Int J Rad Appl Instrum B; 1988; 15(3):271-6. PubMed ID: 3260229
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High aerobic glycolysis of rat hepatoma cells in culture: role of mitochondrial hexokinase.
    Bustamante E; Pedersen PL
    Proc Natl Acad Sci U S A; 1977 Sep; 74(9):3735-9. PubMed ID: 198801
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In vivo metabolism and UTP-depleting action of 2-deoxy-2-fluoro-D-galactose.
    Grün BR; Berger U; Oberdorfer F; Hull WE; Ostertag H; Keppler D
    Adv Enzyme Regul; 1990; 30():231-42. PubMed ID: 2403033
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nucleotide contents of ascites hepatoma cells and their changes induced by D-galactosamine.
    Keppler DO; Smith DF
    Cancer Res; 1974 Apr; 34(4):705-11. PubMed ID: 4360835
    [No Abstract]   [Full Text] [Related]  

  • 10. Uridylate trapping, induction of UTP deficiency, and stimulation of pyrimidine synthesis de novo by D-galactosone.
    Keppler DO; Schulz-Holstege C; Fauler J; Reiffen KA; Schneider F
    Biochem J; 1982 Jul; 206(1):139-46. PubMed ID: 7126188
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metabolic effects of 2-deoxy-D-glucose in isolated fat cells.
    Chandramouli V; Carter JR
    Biochim Biophys Acta; 1977 Feb; 496(2):278-91. PubMed ID: 836900
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rate-limiting factors in glycolysis and transport of inorganic phosphate in DBAH-1 tumor, DBAG tumor, Novikoff hepatoma, and Novikoff ascites tumor.
    Wu R; Power H; Hamerman D
    Cancer Res; 1965 Nov; 25(10):1733-42. PubMed ID: 4285687
    [No Abstract]   [Full Text] [Related]  

  • 13. ATP level and control of glycolysis in Novikoff ascites-hepatoma cells.
    Nigam VN
    Enzymologia; 1969; 36(4):257-68. PubMed ID: 4306660
    [No Abstract]   [Full Text] [Related]  

  • 14. Incorporation of the hexose analogue 2-deoxy-D-galactose into membrane glycoproteins in HepG2 cells.
    Geilen CC; Kannicht C; Orthen B; Heidrich C; Paul C; Grunow D; Nuck R; Reutter W
    Arch Biochem Biophys; 1992 Jul; 296(1):108-14. PubMed ID: 1318686
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multisite control of the Crabtree effect in ascites hepatoma cells.
    Rodríguez-Enríquez S; Juárez O; Rodríguez-Zavala JS; Moreno-Sánchez R
    Eur J Biochem; 2001 Apr; 268(8):2512-9. PubMed ID: 11298771
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Potentiation of antimetabolite action by uridylate trapping.
    Keppler D; Holstege A; Weckbecker G; Fauler J; Gasser T
    Adv Enzyme Regul; 1985; 24():417-27. PubMed ID: 3835824
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transport and phosphorylation of 2-deoxy-D-galactase in renal cortical cells.
    Kleinzeller A; McAvoy EM
    Biochim Biophys Acta; 1976 Nov; 455(1):126-43. PubMed ID: 10999
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The pentose phosphate pathway of glucose metabolism. Enzyme profiles and transient and steady-state content of intermediates of alternative pathways of glucose metabolism in Krebs ascites cells.
    Gumaa KA; McLean P
    Biochem J; 1969 Dec; 115(5):1009-29. PubMed ID: 5360673
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inhibition of glycolysis and interference with protein synthesis in hepatoma cells.
    Ferrero ME; Ferrero E; Bernelli-Zazzera A
    J Natl Cancer Inst; 1977 Mar; 58(3):645-50. PubMed ID: 190411
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Contributions of glycolysis and oxidative phosphorylation to adenosine 5'-triphosphate production in AS-30D hepatoma cells.
    Nakashima RA; Paggi MG; Pedersen PL
    Cancer Res; 1984 Dec; 44(12 Pt 1):5702-6. PubMed ID: 6498833
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.