These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 190012)

  • 21. Differences in glycolytic capacity and hypoxia tolerance between hepatoma cells and hepatocytes.
    Hugo-Wissemann D; Anundi I; Lauchart W; Viebahn R; de Groot H
    Hepatology; 1991 Feb; 13(2):297-303. PubMed ID: 1847350
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Deoxyglucose and 3-O-methylglucose transport in untreated and ATP-depleted Novikoff rat hepatoma cells. Analysis by a rapid kinetic technique, relationship to phosphorylation and effects of inhibitors.
    Graff JC; Wohlhueter RM; Plagemann PG
    J Cell Physiol; 1978 Aug; 96(2):171-88. PubMed ID: 670303
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Metabolism of 2-deoxy-D-galactose in liver induces phosphate and uridylate trapping.
    Starling JJ; Keppler DO
    Eur J Biochem; 1977 Nov; 80(2):373-9. PubMed ID: 923584
    [No Abstract]   [Full Text] [Related]  

  • 24. 2-Deoxy-2-[18F]fluoro-D-galactose as an in vivo tracer for imaging galactose metabolism in tumors with positron emission tomography.
    Ishiwata K; Yamaguchi K; Kameyama M; Fukuda H; Tada M; Matsuzawa T; Muraishi K; Itoh J; Kawashima K; Takahashi T
    Int J Rad Appl Instrum B; 1989; 16(3):247-54. PubMed ID: 2785512
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Transport, phosphorylation, and toxicity of a tricyclic nucleoside in cultured Novikoff rat hepatoma cells and other cell lines and relase of its monophosphate by the cells.
    Plagemann PG
    J Natl Cancer Inst; 1976 Dec; 57(6):1283-95. PubMed ID: 187799
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Terminal sugars in glycoconjugates: metabolism of free and protein-bound L-fucose, N-acetylneuraminic acid and D-galactose in liver and Morris hepatomas.
    Reutter W; Bauer C
    Adv Exp Med Biol; 1977 May 22-24; 92():405-37. PubMed ID: 205106
    [No Abstract]   [Full Text] [Related]  

  • 27. THE ROLE OF PI IN THE CONTROL OF GLYCOLYSIS IN ASCITES TUMOR CELLS.
    WU R
    Biochem Biophys Res Commun; 1965 Feb; 18():402-8. PubMed ID: 14300756
    [No Abstract]   [Full Text] [Related]  

  • 28. [RNA biosynthesis in the ascitic cells of Ehrlich's carcinoma and Zajdela's hepatoma under conditions of blocked oxidative phosphorylation].
    Shilov LA
    Vopr Onkol; 1977; 23(9):55-9. PubMed ID: 198951
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Evidence against necessary phosphorylation during hexose transport in Aspergillus nidulans.
    Brown CE; Romano AH
    J Bacteriol; 1969 Dec; 100(3):1198-203. PubMed ID: 5361211
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Substrate oxidation and ATP supply in AS-30D hepatoma cells.
    Rodríguez-Enríquez S; Torres-Márquez ME; Moreno-Sánchez R
    Arch Biochem Biophys; 2000 Mar; 375(1):21-30. PubMed ID: 10683245
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Transport and phosphorylation of D-galactose in renal cortical cells.
    Kleinzeller A; McAvoy EM
    Biochim Biophys Acta; 1976 Nov; 455(1):109-25. PubMed ID: 10998
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Glycogen metabolism in Novikoff ascites-hepatoma cells.
    Nigam VN
    Biochem J; 1967 Feb; 102(2):468-77. PubMed ID: 4291492
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Inhibition of glycolysis by 2-deoxygalactose in Saccharomyces cerevisiae.
    Lagunas R; Moreno E
    Yeast; 1992 Feb; 8(2):107-15. PubMed ID: 1532877
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Hexokinase: the direct link between mitochondrial and glycolytic reactions in rapidly growing cancer cells.
    Bustamente E; Morris HP; Pedersen PL
    Adv Exp Med Biol; 1977 May 22-24; 92():363-80. PubMed ID: 205103
    [No Abstract]   [Full Text] [Related]  

  • 35. Pathways of glycogen synthesis in Novikoff ascites-hepatoma cells.
    Nigam VN
    Biochem J; 1969 Nov; 115(2):315-22. PubMed ID: 4314121
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Resveratrol mainly stimulates the glycolytic ATP synthesis flux and not the mitochondrial one: a saturation transfer NMR study in perfused and isolated rat liver.
    Beauvieux MC; Stephant A; Gin H; Serhan N; Couzigou P; Gallis JL
    Pharmacol Res; 2013 Dec; 78():11-7. PubMed ID: 24090928
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Control of glycolysis by phosphofructokinase in slices of rat liver, Novikoff hepatoma, and adenocarcinomas.
    Wu R
    Biochem Biophys Res Commun; 1964; 14():79-85. PubMed ID: 4284349
    [No Abstract]   [Full Text] [Related]  

  • 38. Determining and understanding the control of glycolysis in fast-growth tumor cells. Flux control by an over-expressed but strongly product-inhibited hexokinase.
    Marín-Hernández A; Rodríguez-Enríquez S; Vital-González PA; Flores-Rodríguez FL; Macías-Silva M; Sosa-Garrocho M; Moreno-Sánchez R
    FEBS J; 2006 May; 273(9):1975-88. PubMed ID: 16640561
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The effects of ammonium, inorganic phosphate and potassium ions on the activity of phosphofructokinases from muscle and nervous tissues of vertebrates and invertebrates.
    Sugden PH; Newsholme EA
    Biochem J; 1975 Jul; 150(1):113-22. PubMed ID: 128356
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Glycolysis inhibitor 2-deoxy-D-glucose suppresses carcinogen-induced rat hepatocarcinogenesis by restricting cancer cell metabolism.
    Wang Z; Zhang L; Zhang D; Sun R; Wang Q; Liu X
    Mol Med Rep; 2015 Mar; 11(3):1917-24. PubMed ID: 25394852
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.