These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
7. Superomniphobic surfaces for effective chemical shielding. Pan S; Kota AK; Mabry JM; Tuteja A J Am Chem Soc; 2013 Jan; 135(2):578-81. PubMed ID: 23265660 [TBL] [Abstract][Full Text] [Related]
8. Surfactant solutions and porous substrates: spreading and imbibition. Starov VM Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660 [TBL] [Abstract][Full Text] [Related]
9. Recent progress in the determination of solid surface tensions from contact angles. Tavana H; Neumann AW Adv Colloid Interface Sci; 2007 Mar; 132(1):1-32. PubMed ID: 17222380 [TBL] [Abstract][Full Text] [Related]
10. Covalently Attached Liquids: Instant Omniphobic Surfaces with Unprecedented Repellency. Wang L; McCarthy TJ Angew Chem Int Ed Engl; 2016 Jan; 55(1):244-8. PubMed ID: 26568536 [TBL] [Abstract][Full Text] [Related]
11. Utilizing dynamic tensiometry to quantify contact angle hysteresis and wetting state transitions on nonwetting surfaces. Kleingartner JA; Srinivasan S; Mabry JM; Cohen RE; McKinley GH Langmuir; 2013 Nov; 29(44):13396-406. PubMed ID: 24070378 [TBL] [Abstract][Full Text] [Related]
12. Design and High-Resolution Characterization of Silicon Wafer-like Omniphobic Liquid Layers Applicable to Any Substrate. Khatir B; Shabanian S; Golovin K ACS Appl Mater Interfaces; 2020 Jul; 12(28):31933-31939. PubMed ID: 32497426 [TBL] [Abstract][Full Text] [Related]
13. Flexible and Stable Omniphobic Surfaces Based on Biomimetic Repulsive Air-Spring Structures. Seo D; Cha SK; Kim G; Shin H; Hong S; Cho YH; Chun H; Choi Y ACS Appl Mater Interfaces; 2019 Feb; 11(6):5877-5884. PubMed ID: 30648844 [TBL] [Abstract][Full Text] [Related]
14. Fluoroalkylated silicon-containing surfaces-estimation of solid-surface energy. Chhatre SS; Guardado JO; Moore BM; Haddad TS; Mabry JM; McKinley GH; Cohen RE ACS Appl Mater Interfaces; 2010 Dec; 2(12):3544-54. PubMed ID: 21067201 [TBL] [Abstract][Full Text] [Related]
15. Apparent Contact Angles on Lubricant-Impregnated Surfaces/SLIPS: From Superhydrophobicity to Electrowetting. McHale G; Orme BV; Wells GG; Ledesma-Aguilar R Langmuir; 2019 Mar; 35(11):4197-4204. PubMed ID: 30759342 [TBL] [Abstract][Full Text] [Related]
16. Experimental Study on Contact Angle Patterns: Liquid Surface Tensions Less Than Solid Surface Tensions. Kwok DY; Ng H; Neumann AW J Colloid Interface Sci; 2000 May; 225(2):323-328. PubMed ID: 11254269 [TBL] [Abstract][Full Text] [Related]
17. Superoleophobic Slippery Lubricant-Infused Surfaces: Combining Two Extremes in the Same Surface. Dong Z; Schumann MF; Hokkanen MJ; Chang B; Welle A; Zhou Q; Ras RHA; Xu Z; Wegener M; Levkin PA Adv Mater; 2018 Nov; 30(45):e1803890. PubMed ID: 30160319 [TBL] [Abstract][Full Text] [Related]
18. Bioinspired super-antiwetting interfaces with special liquid-solid adhesion. Liu M; Zheng Y; Zhai J; Jiang L Acc Chem Res; 2010 Mar; 43(3):368-77. PubMed ID: 19954162 [TBL] [Abstract][Full Text] [Related]
19. Omniphobic Metal Surfaces with Low Contact Angle Hysteresis and Tilt Angles. Singh N; Kakiuchida H; Sato T; Hönes R; Yagihashi M; Urata C; Hozumi A Langmuir; 2018 Sep; 34(38):11405-11413. PubMed ID: 30207475 [TBL] [Abstract][Full Text] [Related]
20. Direct observation of drops on slippery lubricant-infused surfaces. Schellenberger F; Xie J; Encinas N; Hardy A; Klapper M; Papadopoulos P; Butt HJ; Vollmer D Soft Matter; 2015 Oct; 11(38):7617-26. PubMed ID: 26291621 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]