BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 19001854)

  • 1. The chromatoid body of male germ cells: epigenetic control and miRNA pathway.
    Nagamori I; Sassone-Corsi P
    Cell Cycle; 2008 Nov; 7(22):3503-8. PubMed ID: 19001854
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The chromatoid body of male germ cells: similarity with processing bodies and presence of Dicer and microRNA pathway components.
    Kotaja N; Bhattacharyya SN; Jaskiewicz L; Kimmins S; Parvinen M; Filipowicz W; Sassone-Corsi P
    Proc Natl Acad Sci U S A; 2006 Feb; 103(8):2647-52. PubMed ID: 16477042
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chromatoid body and small RNAs in male germ cells.
    Meikar O; Da Ros M; Korhonen H; Kotaja N
    Reproduction; 2011 Aug; 142(2):195-209. PubMed ID: 21652638
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The chromatoid body: a germ-cell-specific RNA-processing centre.
    Kotaja N; Sassone-Corsi P
    Nat Rev Mol Cell Biol; 2007 Jan; 8(1):85-90. PubMed ID: 17183363
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reconstitution of chromatoid body-like particles in cultured cells: a novel approach to elucidate the mechanism of assembly and function of the chromatoid body.
    Roucou X
    RNA Biol; 2009; 6(2):165-8. PubMed ID: 19229140
    [TBL] [Abstract][Full Text] [Related]  

  • 6. FYCO1 and autophagy control the integrity of the haploid male germ cell-specific RNP granules.
    Da Ros M; Lehtiniemi T; Olotu O; Fischer D; Zhang FP; Vihinen H; Jokitalo E; Sironen A; Toppari J; Kotaja N
    Autophagy; 2017 Feb; 13(2):302-321. PubMed ID: 27929729
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Epigenetic regulation of male germ cell differentiation.
    Meikar O; Da Ros M; Kotaja N
    Subcell Biochem; 2013; 61():119-38. PubMed ID: 23150249
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mouse Tudor Repeat-1 (MTR-1) is a novel component of chromatoid bodies/nuages in male germ cells and forms a complex with snRNPs.
    Chuma S; Hiyoshi M; Yamamoto A; Hosokawa M; Takamune K; Nakatsuji N
    Mech Dev; 2003 Sep; 120(9):979-90. PubMed ID: 14550528
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interplay of PIWI/Argonaute protein MIWI and kinesin KIF17b in chromatoid bodies of male germ cells.
    Kotaja N; Lin H; Parvinen M; Sassone-Corsi P
    J Cell Sci; 2006 Jul; 119(Pt 13):2819-25. PubMed ID: 16787948
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Retromer vesicles interact with RNA granules in haploid male germ cells.
    Da Ros M; Hirvonen N; Olotu O; Toppari J; Kotaja N
    Mol Cell Endocrinol; 2015 Feb; 401():73-83. PubMed ID: 25486514
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inhibitor induced alterations of chromatoid bodies in male germ line cells of Xenopus laevis.
    Kalt MR; Pinney HE; Graves K
    Cell Tissue Res; 1975 Aug; 161(2):193-210. PubMed ID: 169993
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A large ribonucleoprotein particle induced by cytoplasmic PrP shares striking similarities with the chromatoid body, an RNA granule predicted to function in posttranscriptional gene regulation.
    Beaudoin S; Vanderperre B; Grenier C; Tremblay I; Leduc F; Roucou X
    Biochim Biophys Acta; 2009 Feb; 1793(2):335-45. PubMed ID: 19014979
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Aging and chromatoid body assembly: Are these two physiological events linked?
    Santos EG; Silva MA; Amorim RP; Giordano LS; Silva DS; Rasmussen LT; Peruquetti RL
    Exp Biol Med (Maywood); 2018 Jul; 243(11):917-925. PubMed ID: 29958504
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Active movements of the chromatoid body. A possible transport mechanism for haploid gene products.
    Parvinen M; Parvinen LM
    J Cell Biol; 1979 Mar; 80(3):621-8. PubMed ID: 457761
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ca(2+)/Calmodulin-Dependent Protein Kinase IV Promotes Interplay of Proteins in Chromatoid Body of Male Germ Cells.
    Wang G; Zhang H; Wang L; Wang Y; Huang H; Sun F
    Sci Rep; 2015 Jul; 5():12126. PubMed ID: 26179157
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Translational control mechanisms in metabolic regulation: critical role of RNA binding proteins, microRNAs, and cytoplasmic RNA granules.
    Adeli K
    Am J Physiol Endocrinol Metab; 2011 Dec; 301(6):E1051-64. PubMed ID: 21971522
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Formation of chromatoid body during rat spermatogenesis.
    Söderström KO
    Z Mikrosk Anat Forsch; 1978; 92(3):417-30. PubMed ID: 751333
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Regulation of an RNA granule during spermatogenesis: acetylation of MVH in the chromatoid body of germ cells.
    Nagamori I; Cruickshank VA; Sassone-Corsi P
    J Cell Sci; 2011 Dec; 124(Pt 24):4346-55. PubMed ID: 22223882
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Maybe repressed mRNAs are not stored in the chromatoid body in mammalian spermatids.
    Kleene KC; Cullinane DL
    Reproduction; 2011 Sep; 142(3):383-8. PubMed ID: 21673073
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Perspectives on mammalian chromatoid body research.
    Peruquetti RL
    Anim Reprod Sci; 2015 Aug; 159():8-16. PubMed ID: 26070909
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.