These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
88 related articles for article (PubMed ID: 1900199)
1. Location of lysine-129 and lysine-40/41 with respect to retinylidene chromophore in bacteriorhodopsin. Sonar SM; Singh AK Biochim Biophys Acta; 1991 Jan; 1076(2):239-44. PubMed ID: 1900199 [TBL] [Abstract][Full Text] [Related]
2. Photochemistry and fluorescence of bacteriorhodopsin excited in its 280-nm absorption band. Kalisky O; Feitelson J; Ottolenghi M Biochemistry; 1981 Jan; 20(1):205-9. PubMed ID: 7470473 [TBL] [Abstract][Full Text] [Related]
3. Fluorescent labeling of bacteriorhodopsin: implications for helix connections. Renthal R; Cothran M; Dawson N; Harris GJ Biochim Biophys Acta; 1987 Mar; 897(3):384-94. PubMed ID: 3101736 [TBL] [Abstract][Full Text] [Related]
4. Evidence for light-induced lysine conformational changes during the primary event of the bacteriorhodopsin photocycle. McMaster E; Lewis A Biochem Biophys Res Commun; 1988 Oct; 156(1):86-91. PubMed ID: 3140817 [TBL] [Abstract][Full Text] [Related]
5. The transverse location of the retinal chromophore in the purple membrane by diffusion-enhanced energy transfer. Leder RO; Helgerson SL; Thomas DD J Mol Biol; 1989 Oct; 209(4):683-701. PubMed ID: 2585504 [TBL] [Abstract][Full Text] [Related]
8. Dynamics of primary events in the photocycle of excited bacteriorhodopsin. Lu JJ; Ming M; Yang Y; Wu J; Li B; Ding JD; Li QG; Qian SX Acta Biochim Biophys Sin (Shanghai); 2004 Nov; 36(11):724-8. PubMed ID: 15514845 [TBL] [Abstract][Full Text] [Related]
9. Threonine-89 participates in the active site of bacteriorhodopsin: evidence for a role in color regulation and Schiff base proton transfer. Russell TS; Coleman M; Rath P; Nilsson A; Rothschild KJ Biochemistry; 1997 Jun; 36(24):7490-7. PubMed ID: 9200698 [TBL] [Abstract][Full Text] [Related]
10. Effect of fluorescamine modification of purple membranes on exciton coupling and light-to-dark adaptation. Lam E; Packer L Biochem Biophys Res Commun; 1981 Jul; 101(2):464-71. PubMed ID: 7306090 [No Abstract] [Full Text] [Related]
11. Conformation and dynamics of [3-13C]Ala- labeled bacteriorhodopsin and bacterioopsin, induced by interaction with retinal and its analogs, as studied by 13C nuclear magnetic resonance. Tuzi S; Yamaguchi S; Naito A; Needleman R; Lanyi JK; Saitô H Biochemistry; 1996 Jun; 35(23):7520-7. PubMed ID: 8652531 [TBL] [Abstract][Full Text] [Related]
12. Participation of bacteriorhodopsin active-site lysine backbone in vibrations associated with retinal photochemistry. Gat Y; Grossjean M; Pinevsky I; Takei H; Rothman Z; Sigrist H; Lewis A; Sheves M Proc Natl Acad Sci U S A; 1992 Mar; 89(6):2434-8. PubMed ID: 1549607 [TBL] [Abstract][Full Text] [Related]
13. The interaction between halogenated anaesthetics and bacteriorhodopsin in purple membranes as examined by intrinsic ultraviolet fluorescence. Lee KH; McIntosh AR; Boucher F Biochem Cell Biol; 1991; 69(2-3):178-84. PubMed ID: 2031718 [TBL] [Abstract][Full Text] [Related]
14. Structural changes in bacteriorhodopsin following retinal photoisomerization from the 13-cis form. Mizuide N; Shibata M; Friedman N; Sheves M; Belenky M; Herzfeld J; Kandori H Biochemistry; 2006 Sep; 45(35):10674-81. PubMed ID: 16939219 [TBL] [Abstract][Full Text] [Related]
15. Fluorescence Resonance Energy Transfer (FRET) as a Spectroscopic Ruler for the Investigation of Protein Induced Lipid Membrane Curvature: Bacteriorhodopsin and Bacteriorhodopsin Analogs in Model Lipid Membranes. Bryl K Appl Spectrosc; 2023 Feb; 77(2):187-199. PubMed ID: 36229916 [TBL] [Abstract][Full Text] [Related]
16. Control of the pump cycle in bacteriorhodopsin: mechanisms elucidated by solid-state NMR of the D85N mutant. Hatcher ME; Hu JG; Belenky M; Verdegem P; Lugtenburg J; Griffin RG; Herzfeld J Biophys J; 2002 Feb; 82(2):1017-29. PubMed ID: 11806941 [TBL] [Abstract][Full Text] [Related]
17. A neutron diffraction study on the location of the polyene chain of retinal in bacteriorhodopsin. Seiff F; Wallat I; Ermann P; Heyn MP Proc Natl Acad Sci U S A; 1985 May; 82(10):3227-31. PubMed ID: 3858820 [TBL] [Abstract][Full Text] [Related]
18. Attachment site(s) of retinal in bacteriorhodopsin. Katre NV; Wolber PK; Stoeckenius W; Stroud RM Proc Natl Acad Sci U S A; 1981 Jul; 78(7):4068-72. PubMed ID: 6794028 [TBL] [Abstract][Full Text] [Related]
19. A low temperature investigation of the intermediates of the photocycle of light-adapted bacteriorhodopsin. Optical absorption and fluorescence measurements. Kriebel AN; Gillbro T; Wild UP Biochim Biophys Acta; 1979 Apr; 546(1):106-20. PubMed ID: 444490 [TBL] [Abstract][Full Text] [Related]
20. Early and late M intermediates in the bacteriorhodopsin photocycle: a solid-state NMR study. Hu JG; Sun BQ; Bizounok M; Hatcher ME; Lansing JC; Raap J; Verdegem PJ; Lugtenburg J; Griffin RG; Herzfeld J Biochemistry; 1998 Jun; 37(22):8088-96. PubMed ID: 9609703 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]