BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 19002169)

  • 1. Concepts of epigenetics in prostate cancer development.
    Cooper CS; Foster CS
    Br J Cancer; 2009 Jan; 100(2):240-5. PubMed ID: 19002169
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The expanding role of epigenetics in the development, diagnosis and treatment of prostate cancer and benign prostatic hyperplasia.
    Dobosy JR; Roberts JL; Fu VX; Jarrard DF
    J Urol; 2007 Mar; 177(3):822-31. PubMed ID: 17296351
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Overexpression of the EZH2, RING1 and BMI1 genes is common in myelodysplastic syndromes: relation to adverse epigenetic alteration and poor prognostic scoring.
    Xu F; Li X; Wu L; Zhang Q; Yang R; Yang Y; Zhang Z; He Q; Chang C
    Ann Hematol; 2011 Jun; 90(6):643-53. PubMed ID: 21125401
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Polycomb-group oncogenes EZH2, BMI1, and RING1 are overexpressed in prostate cancer with adverse pathologic and clinical features.
    van Leenders GJ; Dukers D; Hessels D; van den Kieboom SW; Hulsbergen CA; Witjes JA; Otte AP; Meijer CJ; Raaphorst FM
    Eur Urol; 2007 Aug; 52(2):455-63. PubMed ID: 17134822
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Epigenetic targets in the diagnosis and treatment of prostate cancer.
    Manoharan M; Ramachandran K; Soloway MS; Singal R
    Int Braz J Urol; 2007; 33(1):11-8. PubMed ID: 17335593
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Epigenetic biomarkers in prostate cancer: Current and future uses.
    Chiam K; Ricciardelli C; Bianco-Miotto T
    Cancer Lett; 2014 Jan; 342(2):248-56. PubMed ID: 22391123
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Epigenetics regulation of prostate cancer: Biomarker and therapeutic potential.
    Ragavi R; Muthukumaran P; Nandagopal S; Ahirwar DK; Tomo S; Misra S; Guerriero G; Shukla KK
    Urol Oncol; 2023 Aug; 41(8):340-353. PubMed ID: 37032230
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Epigenetic modifications in prostate cancer.
    Ngollo M; Dagdemir A; Karsli-Ceppioglu S; Judes G; Pajon A; Penault-Llorca F; Boiteux JP; Bignon YJ; Guy L; Bernard-Gallon DJ
    Epigenomics; 2014; 6(4):415-26. PubMed ID: 25333850
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The SRA protein UHRF1 promotes epigenetic crosstalks and is involved in prostate cancer progression.
    Babbio F; Pistore C; Curti L; Castiglioni I; Kunderfranco P; Brino L; Oudet P; Seiler R; Thalman GN; Roggero E; Sarti M; Pinton S; Mello-Grand M; Chiorino G; Catapano CV; Carbone GM; Bonapace IM
    Oncogene; 2012 Nov; 31(46):4878-87. PubMed ID: 22330138
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Essential role for activation of the Polycomb group (PcG) protein chromatin silencing pathway in metastatic prostate cancer.
    Berezovska OP; Glinskii AB; Yang Z; Li XM; Hoffman RM; Glinsky GV
    Cell Cycle; 2006 Aug; 5(16):1886-901. PubMed ID: 16963837
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Epigenetics-based diagnostic and therapeutic strategies: shifting the paradigm in prostate cancer.
    Clermont PL
    Epigenomics; 2023 Jan; 15(2):75-87. PubMed ID: 36974615
    [TBL] [Abstract][Full Text] [Related]  

  • 12. TMPRSS2 fusions with oncogenic ETS factors in prostate cancer involve unbalanced genomic rearrangements and are associated with HDAC1 and epigenetic reprogramming.
    Iljin K; Wolf M; Edgren H; Gupta S; Kilpinen S; Skotheim RI; Peltola M; Smit F; Verhaegh G; Schalken J; Nees M; Kallioniemi O
    Cancer Res; 2006 Nov; 66(21):10242-6. PubMed ID: 17079440
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The association between histone 3 lysine 27 trimethylation (H3K27me3) and prostate cancer: relationship with clinicopathological parameters.
    Ngollo M; Lebert A; Dagdemir A; Judes G; Karsli-Ceppioglu S; Daures M; Kemeny JL; Penault-Llorca F; Boiteux JP; Bignon YJ; Guy L; Bernard-Gallon D
    BMC Cancer; 2014 Dec; 14():994. PubMed ID: 25535400
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The epigenetics of prostate cancer diagnosis and prognosis: update on clinical applications.
    Blute ML; Damaschke NA; Jarrard DF
    Curr Opin Urol; 2015 Jan; 25(1):83-8. PubMed ID: 25405932
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Down-regulation of human DAB2IP gene expression mediated by polycomb Ezh2 complex and histone deacetylase in prostate cancer.
    Chen H; Tu SW; Hsieh JT
    J Biol Chem; 2005 Jun; 280(23):22437-44. PubMed ID: 15817459
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Exploiting Epigenetic Alterations in Prostate Cancer.
    Baumgart SJ; Haendler B
    Int J Mol Sci; 2017 May; 18(5):. PubMed ID: 28486411
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recent Advances in Epigenetic Biomarkers and Epigenetic Targeting in Prostate Cancer.
    Kumaraswamy A; Welker Leng KR; Westbrook TC; Yates JA; Zhao SG; Evans CP; Feng FY; Morgan TM; Alumkal JJ
    Eur Urol; 2021 Jul; 80(1):71-81. PubMed ID: 33785255
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Prostate Cancer Epigenetics: From Basic Mechanisms to Clinical Implications.
    Yegnasubramanian S; De Marzo AM; Nelson WG
    Cold Spring Harb Perspect Med; 2019 Apr; 9(4):. PubMed ID: 29959132
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Epigenetic regulation of prostate cancer: the theories and the clinical implications.
    Liao Y; Xu K
    Asian J Androl; 2019; 21(3):279-290. PubMed ID: 30084432
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Abnormal DNA methylation, epigenetics, and prostate cancer.
    Nelson WG; Yegnasubramanian S; Agoston AT; Bastian PJ; Lee BH; Nakayama M; De Marzo AM
    Front Biosci; 2007 May; 12():4254-66. PubMed ID: 17485372
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.