BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 19002506)

  • 21. Genetic analyses of nickel tolerance in a North American serpentine endemic plant, Caulanthus amplexicaulis var. barbarae (Brassicaceae).
    Burrell AM; Hawkins AK; Pepper AE
    Am J Bot; 2012 Nov; 99(11):1875-83. PubMed ID: 23125430
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Physiological and transcriptional responses of the ectomycorrhizal fungus Cenococcum geophilum to salt stress.
    Li J; Li C; Tsuruta M; Matsushita N; Goto S; Shen Z; Tsugama D; Zhang S; Lian C
    Mycorrhiza; 2022 Jul; 32(3-4):327-340. PubMed ID: 35546369
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Isolation and characterization of Ni mobilizing PGPB from serpentine soils and their potential in promoting plant growth and Ni accumulation by Brassica spp.
    Ma Y; Rajkumar M; Freitas H
    Chemosphere; 2009 May; 75(6):719-25. PubMed ID: 19232424
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effects of serpentine soil factors on Virginia pine (Pinus virginiana) seedlings.
    Miller SP; Cumming JR
    Tree Physiol; 2000 Oct; 20(16):1129-35. PubMed ID: 11269965
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Serpentine soils promote ectomycorrhizal fungal diversity.
    Branco S
    Mol Ecol; 2010 Dec; 19(24):5566-76. PubMed ID: 21062385
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Serpentine environment prevails over geographic distribution in shaping the genetic diversity of Medicago lupulina L.
    Ahatović Hajro A; Hasanović M; Murtić S; Kalajdžić A; Pojskić N; Durmić-Pašić A
    Mol Genet Genomics; 2024 Mar; 299(1):28. PubMed ID: 38472470
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Bioaccumulation and human health risk assessment of chromium and nickel in paddy rice grown in serpentine soils.
    Infante EF; Dulfo CP; Dicen GP; Hseu ZY; Navarrete IA
    Environ Sci Pollut Res Int; 2021 Apr; 28(14):17146-17157. PubMed ID: 33394442
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Hypotheses, mechanisms and trade-offs of tolerance and adaptation to serpentine soils: from species to ecosystem level.
    Kazakou E; Dimitrakopoulos PG; Baker AJ; Reeves RD; Troumbis AY
    Biol Rev Camb Philos Soc; 2008 Nov; 83(4):495-508. PubMed ID: 18823392
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Isolation source matters: sclerotia and ectomycorrhizal roots provide different views of genetic diversity in Cenococcum geophilum.
    Obase K; Douhan GW; Matsuda Y; Smith ME
    Mycologia; 2018; 110(3):473-481. PubMed ID: 29923792
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Natural speciation of nickel at the micrometer scale in serpentine (ultramafic) topsoils using microfocused X-ray fluorescence, diffraction, and absorption.
    Siebecker MG; Chaney RL; Sparks DL
    Geochem Trans; 2018 Aug; 19(1):14. PubMed ID: 30109512
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Metal accumulation in cattle raised in a serpentine-soil area: relationship between metal concentrations in soil, forage and animal tissues.
    Miranda M; Benedito JL; Blanco-Penedo I; López-Lamas C; Merino A; López-Alonso M
    J Trace Elem Med Biol; 2009; 23(3):231-8. PubMed ID: 19486833
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Uptake and toxicity of spiked nickel to earthworm Eisenia fetida in a range of Chinese soils.
    Yan Z; Wang B; Xie D; Zhou Y; Guo G; Xu M; Bai L; Hou H; Li F
    Environ Toxicol Chem; 2011 Nov; 30(11):2586-93. PubMed ID: 21898557
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Diversity and structure of ectomycorrhizal and co-associated fungal communities in a serpentine soil.
    Urban A; Puschenreiter M; Strauss J; Gorfer M
    Mycorrhiza; 2008 Sep; 18(6-7):339-54. PubMed ID: 18677625
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Ectomycorrhizal fungal diversity associated with endemic Tristaniopsis spp. (Myrtaceae) in ultramafic and volcano-sedimentary soils in New Caledonia.
    Waseem M; Ducousso M; Prin Y; Domergue O; Hannibal L; Majorel C; Jourand P; Galiana A
    Mycorrhiza; 2017 May; 27(4):407-413. PubMed ID: 28091750
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Heavy metal resistance and genotypic analysis of metal resistance genes in gram-positive and gram-negative bacteria present in Ni-rich serpentine soil and in the rhizosphere of Alyssum murale.
    Abou-Shanab RA; van Berkum P; Angle JS
    Chemosphere; 2007 Jun; 68(2):360-7. PubMed ID: 17276484
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Evolution of nickel hyperaccumulation and serpentine adaptation in the Alyssum serpyllifolium species complex.
    Sobczyk MK; Smith JA; Pollard AJ; Filatov DA
    Heredity (Edinb); 2017 Jan; 118(1):31-41. PubMed ID: 27782119
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Biotechnological applications of serpentine soil bacteria for phytoremediation of trace metals.
    Rajkumar M; Vara Prasad MN; Freitas H; Ae N
    Crit Rev Biotechnol; 2009; 29(2):120-30. PubMed ID: 19514893
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Nickel hyperaccumulation by Thlaspi montanum var. montanum (Brassicaceae): a constitutive trait.
    Boyd R; Martens S
    Am J Bot; 1998 Feb; 85(2):259. PubMed ID: 21684909
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Nickel and copper accumulation strategies in Odontarrhena obovata growing on copper smelter-influenced and non-influenced serpentine soils: a comparative field study.
    Tripti ; Kumar A; Maleva M; Borisova G; Chukina N; Morozova M; Kiseleva I
    Environ Geochem Health; 2021 Apr; 43(4):1401-1413. PubMed ID: 32347513
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Mutations in CAX1 produce phenotypes characteristic of plants tolerant to serpentine soils.
    Bradshaw HD
    New Phytol; 2005 Jul; 167(1):81-8. PubMed ID: 15948832
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.