These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

228 related articles for article (PubMed ID: 19002553)

  • 1. Neurotransmitter receptor heteromers in neurodegenerative diseases and neural plasticity.
    Franco R
    J Neural Transm (Vienna); 2009 Aug; 116(8):983-7. PubMed ID: 19002553
    [TBL] [Abstract][Full Text] [Related]  

  • 2. G-protein-coupled receptor heteromers or how neurons can display differently flavoured patterns in response to the same neurotransmitter.
    Franco R
    Br J Pharmacol; 2009 Sep; 158(1):23-31. PubMed ID: 19422387
    [TBL] [Abstract][Full Text] [Related]  

  • 3. P2X receptors and synaptic plasticity.
    Pankratov Y; Lalo U; Krishtal OA; Verkhratsky A
    Neuroscience; 2009 Jan; 158(1):137-48. PubMed ID: 18495357
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synaptic roles of Cdk5: implications in higher cognitive functions and neurodegenerative diseases.
    Cheung ZH; Fu AK; Ip NY
    Neuron; 2006 Apr; 50(1):13-8. PubMed ID: 16600851
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prime time for G-protein-coupled receptor heteromers as therapeutic targets for CNS disorders: the dopamine D₁-D₃ receptor heteromer.
    Ferré S; Lluis C; Lanciego JL; Franco R
    CNS Neurol Disord Drug Targets; 2010 Nov; 9(5):596-600. PubMed ID: 20632968
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Group I Metabotropic Glutamate Receptor Interacting Proteins: Fine-Tuning Receptor Functions in Health and Disease.
    Kalinowska M; Francesconi A
    Curr Neuropharmacol; 2016; 14(5):494-503. PubMed ID: 27296642
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Adenosine receptor heteromers and their integrative role in striatal function.
    Ferré S; Ciruela F; Quiroz C; Luján R; Popoli P; Cunha RA; Agnati LF; Fuxe K; Woods AS; Lluis C; Franco R
    ScientificWorldJournal; 2007 Nov; 7():74-85. PubMed ID: 17982579
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Deconstruction for reconstruction: the role of proteolysis in neural plasticity and disease.
    Bingol B; Sheng M
    Neuron; 2011 Jan; 69(1):22-32. PubMed ID: 21220096
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Heteromeric dopamine receptor signaling complexes: emerging neurobiology and disease relevance.
    Perreault ML; Hasbi A; O'Dowd BF; George SR
    Neuropsychopharmacology; 2014 Jan; 39(1):156-68. PubMed ID: 23774533
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The role of α-synuclein in neurotransmission and synaptic plasticity.
    Cheng F; Vivacqua G; Yu S
    J Chem Neuroanat; 2011 Dec; 42(4):242-8. PubMed ID: 21167933
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interaction of adenosine receptors with other receptors from therapeutic perspective in Parkinson's disease.
    Morin N; Di Paolo T
    Int Rev Neurobiol; 2014; 119():151-67. PubMed ID: 25175965
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Clusters of interacting receptors can stabilize synaptic efficacies.
    Shouval HZ
    Proc Natl Acad Sci U S A; 2005 Oct; 102(40):14440-5. PubMed ID: 16189022
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regulation of corticostriatal synaptic plasticity by G protein-coupled receptors.
    López de Maturana R; Sánchez-Pernaute R
    CNS Neurol Disord Drug Targets; 2010 Nov; 9(5):601-15. PubMed ID: 20632967
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Adenosine receptor containing oligomers: their role in the control of dopamine and glutamate neurotransmission in the brain.
    Ciruela F; Gómez-Soler M; Guidolin D; Borroto-Escuela DO; Agnati LF; Fuxe K; Fernández-Dueñas V
    Biochim Biophys Acta; 2011 May; 1808(5):1245-55. PubMed ID: 21316336
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Participation of adenosine receptors in neuroprotection.
    Ribeiro JA; Sebastiao AM; de Mendonca A
    Drug News Perspect; 2003 Mar; 16(2):80-6. PubMed ID: 12792668
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Possible role of intramembrane receptor-receptor interactions in memory and learning via formation of long-lived heteromeric complexes: focus on motor learning in the basal ganglia.
    Agnati LF; Franzen O; Ferré S; Leo G; Franco R; Fuxe K
    J Neural Transm Suppl; 2003; (65):1-28. PubMed ID: 12946046
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Receptor density pattern confirms and enhances the anatomic-functional features of the macaque superior parietal lobule areas.
    Impieri D; Zilles K; Niu M; Rapan L; Schubert N; Galletti C; Palomero-Gallagher N
    Brain Struct Funct; 2019 Nov; 224(8):2733-2756. PubMed ID: 31392403
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synapses in neurodegenerative diseases.
    Bae JR; Kim SH
    BMB Rep; 2017 May; 50(5):237-246. PubMed ID: 28270301
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transmitting on actin: synaptic control of dendritic architecture.
    Schubert V; Dotti CG
    J Cell Sci; 2007 Jan; 120(Pt 2):205-12. PubMed ID: 17215449
    [TBL] [Abstract][Full Text] [Related]  

  • 20. CNS remyelination as a novel reparative approach to neurodegenerative diseases: The roles of purinergic signaling and the P2Y-like receptor GPR17.
    Fumagalli M; Lecca D; Abbracchio MP
    Neuropharmacology; 2016 May; 104():82-93. PubMed ID: 26453964
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.