These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 19003002)

  • 1. Cell biology of deep-sea multicellular organisms.
    Koyama S
    Cytotechnology; 2007 Dec; 55(2-3):125-33. PubMed ID: 19003002
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tissue culture of the deep-sea eel Simenchelys parasiticus collected at 1,162 m.
    Koyama S; Horii M; Miwa T; Aizawa M
    Extremophiles; 2003 Jun; 7(3):245-8. PubMed ID: 12768456
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of the piezo-tolerance of cultured deep-sea eel cells on survival rates, cell proliferation, and cytoskeletal structures.
    Koyama S; Kobayashi H; Inoue A; Miwa T; Aizawa M
    Extremophiles; 2005 Dec; 9(6):449-60. PubMed ID: 16082498
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Piezotolerance of the cytoskeletal structure in cultured deep-sea fish cells using DNA transfection and protein introduction techniques.
    Koyama S; Aizawa M
    Cytotechnology; 2008 Jan; 56(1):19-26. PubMed ID: 19002837
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Survival of deep-sea shrimp (Alvinocaris sp.) during decompression and larval hatching at atmospheric pressure.
    Koyama S; Nagahama T; Ootsu N; Takayama T; Horii M; Konishi S; Miwa T; Ishikawa Y; Aizawa M
    Mar Biotechnol (NY); 2005; 7(4):272-8. PubMed ID: 15942807
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pressure-Retaining Sampler and High-Pressure Systems to Study Deep-Sea Microbes Under
    Garel M; Bonin P; Martini S; Guasco S; Roumagnac M; Bhairy N; Armougom F; Tamburini C
    Front Microbiol; 2019; 10():453. PubMed ID: 31024462
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Deep-Sea Fungi Could Be the New Arsenal for Bioactive Molecules.
    Zain Ul Arifeen M; Ma YN; Xue YR; Liu CH
    Mar Drugs; 2019 Dec; 18(1):. PubMed ID: 31861953
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Post-capture immune gene expression studies in the deep-sea hydrothermal vent mussel Bathymodiolus azoricus acclimatized to atmospheric pressure.
    Barros I; Divya B; Martins I; Vandeperre F; Santos RS; Bettencourt R
    Fish Shellfish Immunol; 2015 Jan; 42(1):159-70. PubMed ID: 25462464
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cloning and characterization of dihydrofolate reductases from deep-sea bacteria.
    Murakami C; Ohmae E; Tate S; Gekko K; Nakasone K; Kato C
    J Biochem; 2010 Apr; 147(4):591-9. PubMed ID: 20040594
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Microbial diversity of deep-sea extremophiles--Piezophiles, Hyperthermophiles, and subsurface microorganisms].
    Kato C; Takai K
    Biol Sci Space; 2000 Dec; 14(4):341-52. PubMed ID: 11589226
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Organochlorine and butyltin residues in deep-sea organisms collected from the western North Pacific, off-Tohoku, Japan.
    de Brito AP; Takahashi S; Ueno D; Iwata H; Tanabe S; Kubodera T
    Mar Pollut Bull; 2002; 45(1-12):348-61. PubMed ID: 12398406
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Description of a new species of deep-water snake eel, Ophichthus mccoskeri (Ophichthidae: Ophichthinae) from Andaman Sea, India.
    Sumod KS; Hibino Y; Manjabrayakath H; Sanjeevan VN
    Zootaxa; 2019 Oct; 4686(1):zootaxa.4686.1.5. PubMed ID: 31719501
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cellular responses in marine animals to hydrostatic pressure.
    Yancey PH
    J Exp Zool A Ecol Integr Physiol; 2020 Jul; 333(6):398-420. PubMed ID: 32096337
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rupture of the cell envelope by decompression of the deep-sea methanogen Methanococcus jannaschii.
    Park CB; Clark DS
    Appl Environ Microbiol; 2002 Mar; 68(3):1458-63. PubMed ID: 11872502
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hydrostatic pressure and temperature affect the tolerance of the free-living marine nematode Halomonhystera disjuncta to acute copper exposure.
    Mevenkamp L; Brown A; Hauton C; Kordas A; Thatje S; Vanreusel A
    Aquat Toxicol; 2017 Nov; 192():178-183. PubMed ID: 28963926
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Changes in the microbial community in Japan Trench sediment from a depth of 6292 m during cultivation without decompression.
    Yanagibayashi M; Nogi Y; Li L; Kato C
    FEMS Microbiol Lett; 1999 Jan; 170(1):271-9. PubMed ID: 9919678
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Deep-sea bacteria: growth and utilization of n-hexadecane at in situ temperature and pressure.
    Schwarz JR; Walker JD; Colwell RR
    Can J Microbiol; 1975 May; 21(5):682-7. PubMed ID: 1125858
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ultrastructural changes in an obligately barophilic marine bacterium after decompression.
    Chastain RA; Yayanos AA
    Appl Environ Microbiol; 1991 May; 57(5):1489-97. PubMed ID: 16348489
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A study of deep-sea natural microbial populations and barophilic pure cultures using a high-pressure chemostat.
    Wirsen CO; Molyneaux SJ
    Appl Environ Microbiol; 1999 Dec; 65(12):5314-21. PubMed ID: 10583982
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Activity of antioxidant enzymes in response to atmospheric pressure induced physiological stress in deep-sea hydrothermal vent mussel Bathymodiolus azoricus.
    Martins I; Romão CV; Goulart J; Cerqueira T; Santos RS; Bettencourt R
    Mar Environ Res; 2016 Mar; 114():65-73. PubMed ID: 26790096
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.