BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 19003385)

  • 1. Comparison of cell growth in T-flasks, in micro hollow fiber bioreactors, and in an industrial scale hollow fiber bioreactor system.
    Gramer MJ; Poeschl DM
    Cytotechnology; 2000 Oct; 34(1-2):111-9. PubMed ID: 19003385
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Selection and isolation of cells for optimal growth in hollow fiber bioreactors.
    Gramer MJ; Britton TL
    Hybridoma; 2000 Oct; 19(5):407-12. PubMed ID: 11128030
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Use of hollow fiber systems for rapid and direct scale up of antibody production from hybridoma cell lines cultured in CL-1000 flasks using BD Cell MAb medium.
    Gramer MJ; Maas J; Lieberman MM
    Cytotechnology; 2003 Sep; 42(3):155-62. PubMed ID: 19002937
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optimal NS0 cell growth in a hollow fiber bioreactor requires increased serum concentration or a cholesterol supplement on the cell side of the fiber.
    Gramer MJ; Maas J
    Biotechnol Prog; 2003; 19(6):1762-6. PubMed ID: 14656153
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Screening tool for hollow-fiber bioreactor process development.
    Gramer MJ; Poeschl DM
    Biotechnol Prog; 1998 Mar; 14(2):203-9. PubMed ID: 9548770
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Antibody production by a hybridoma cell line at high cell density is limited by two independent mechanisms.
    Gramer MJ; Britton TL
    Biotechnol Bioeng; 2002 Aug; 79(3):277-83. PubMed ID: 12115416
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of hollow fiber bioreactors as an alternative to murine ascites production for small scale monoclonal antibody production.
    Jackson LR; Trudel LJ; Fox JG; Lipman NS
    J Immunol Methods; 1996 Feb; 189(2):217-31. PubMed ID: 8613673
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Large-Scale Automated Hollow-Fiber Bioreactor Expansion of Umbilical Cord-Derived Human Mesenchymal Stromal Cells for Neurological Disorders.
    Vymetalova L; Kucirkova T; Knopfova L; Pospisilova V; Kasko T; Lejdarova H; Makaturova E; Kuglik P; Oralova V; Matalova E; Benes P; Koristek Z; Forostyak S
    Neurochem Res; 2020 Jan; 45(1):204-214. PubMed ID: 31828497
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Establishing the scalable manufacture of primary human T-cells in an automated stirred-tank bioreactor.
    Costariol E; Rotondi M; Amini A; Hewitt CJ; Nienow AW; Heathman TRJ; Micheletti M; Rafiq QA
    Biotechnol Bioeng; 2019 Oct; 116(10):2488-2502. PubMed ID: 31184370
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Numberical simulation of fluid flow and three-dimensional expansion of tissue engineering seed cells in large scale inside a novel rotating wall hollow fiber membrane bioreactor.
    Song K; Yan X; Zhang Y; Song F; Lim M; Fang M; Shi F; Wang L; Liu T
    Bioprocess Biosyst Eng; 2015 Aug; 38(8):1527-40. PubMed ID: 25868714
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Monoclonal antibody production in hollow fiber bioreactors using serum-free medium.
    Heifetz AH; Braatz JA; Wolfe RA; Barry RM; Miller DA; Solomon BA
    Biotechniques; 1989 Feb; 7(2):192-9. PubMed ID: 2629847
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Continuous production of anti-hepatitis B surface antigen monoclonal antibody in hollow fiber perfusion bioreactor].
    Meng MH; Chen GC; Hsieh JH; Yueh Y; Chen SC; Chang TH; Tsao D
    Zhonghua Min Guo Wei Sheng Wu Ji Mian Yi Xue Za Zhi; 1988 Aug; 21(3):125-40. PubMed ID: 3072154
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of optimized transfectoma cell lines for production of chimeric antibodies in hollow fiber cell culture systems.
    Schläpfer BS; Scheibler M; Holtorf AP; Van Nguyen H; Pluschke G
    Biotechnol Bioeng; 1995 Feb; 45(4):310-9. PubMed ID: 18623184
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of a novel membrane aerated hollow-fiber microbioreactor.
    Villain L; Meyer L; Kroll S; Beutel S; Scheper T
    Biotechnol Prog; 2008; 24(2):367-71. PubMed ID: 18386917
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Monitoring of cell viability and cell growth in a hollow-fiber bioreactor by use of the dye Alamar Blue.
    Gloeckner H; Jonuleit T; Lemke HD
    J Immunol Methods; 2001 Jun; 252(1-2):131-8. PubMed ID: 11334972
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A comparison of monoclonal antibody productivity in different hollow fiber bioreactors.
    Lowrey D; Murphy S; Goffe RA
    J Biotechnol; 1994 Jul; 36(1):35-8. PubMed ID: 7765157
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of low culture temperature on urokinase production in hollow fiber reactor.
    Khaparde SS; Roychoudhury PK
    Appl Biochem Biotechnol; 2012 Nov; 168(6):1655-63. PubMed ID: 22976853
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Proof-of-concept of a novel micro-bioreactor for fast development of industrial bioprocesses.
    Reis N; Gonçalves CN; Vicente AA; Teixeira JA
    Biotechnol Bioeng; 2006 Nov; 95(4):744-53. PubMed ID: 16758459
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Large-scale production of natural cytokines during activation and expansion of human T lymphocytes in hollow fiber bioreactor cultures.
    Lamers CH; Gratama JW; Luider-Vrieling B; Bolhuis RL; Bast EJ
    J Immunother; 1999 Jul; 22(4):299-307. PubMed ID: 10404431
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Large-scale progenitor cell expansion for multiple donors in a monitored hollow fibre bioreactor.
    Lambrechts T; Papantoniou I; Rice B; Schrooten J; Luyten FP; Aerts JM
    Cytotherapy; 2016 Sep; 18(9):1219-33. PubMed ID: 27421744
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.