These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 19003603)

  • 41. Bisphenol A degradation in water by ligninolytic enzymes.
    Gassara F; Brar SK; Verma M; Tyagi RD
    Chemosphere; 2013 Aug; 92(10):1356-60. PubMed ID: 23668961
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Co-cultured production of lignin-modifying enzymes with white-rot fungi.
    Qi-He C; Krügener S; Hirth T; Rupp S; Zibek S
    Appl Biochem Biotechnol; 2011 Sep; 165(2):700-18. PubMed ID: 21647688
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Bioremediation of lignin derivatives and phenolics in wastewater with lignin modifying enzymes: Status, opportunities and challenges.
    Singh AK; Bilal M; Iqbal HMN; Meyer AS; Raj A
    Sci Total Environ; 2021 Jul; 777():145988. PubMed ID: 33684751
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Agro-industrial wastes revalorization as feedstock: production of lignin-modifying enzymes extracts by solid-state fermentation using white rot fungi.
    Contreras E; Flores R; Gutiérrez A; Cerro D; Sepúlveda LA
    Prep Biochem Biotechnol; 2023; 53(5):488-499. PubMed ID: 35980820
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The emerging role for bacteria in lignin degradation and bio-product formation.
    Bugg TD; Ahmad M; Hardiman EM; Singh R
    Curr Opin Biotechnol; 2011 Jun; 22(3):394-400. PubMed ID: 21071202
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Bioremediation of a wine distillery wastewater using white rot fungi and the subsequent production of laccase.
    Strong PJ; Burgess JE
    Water Sci Technol; 2007; 56(2):179-86. PubMed ID: 17849993
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Mechanisms of Lignin-Degrading Enzymes.
    Xiao J; Zhang S; Chen G
    Protein Pept Lett; 2020; 27(7):574-581. PubMed ID: 31868142
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Differential expression of manganese peroxidase and laccase in white-rot fungi in the presence of manganese or aromatic compounds.
    Scheel T; Höfer M; Ludwig S; Hölker U
    Appl Microbiol Biotechnol; 2000 Nov; 54(5):686-91. PubMed ID: 11131396
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Ligninolytic fungal laccases and their biotechnological applications.
    Singh Arora D; Kumar Sharma R
    Appl Biochem Biotechnol; 2010 Mar; 160(6):1760-88. PubMed ID: 19513857
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Lignin-modifying enzymes in filamentous basidiomycetes--ecological, functional and phylogenetic review.
    Lundell TK; Mäkelä MR; Hildén K
    J Basic Microbiol; 2010 Feb; 50(1):5-20. PubMed ID: 20175122
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Degradation of xenobiotic compounds by lignin-degrading white-rot fungi: enzymology and mechanisms involved.
    Christian V; Shrivastava R; Shukla D; Modi HA; Vyas BR
    Indian J Exp Biol; 2005 Apr; 43(4):301-12. PubMed ID: 15875713
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Production of ligninolytic enzymes and synthetic lignin mineralization by the bird's nest fungus Cyathus stercoreus.
    Sethuraman A; Akin DE; Eriksson KE
    Appl Microbiol Biotechnol; 1999 Nov; 52(5):689-97. PubMed ID: 10570816
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Removal of estrogenic activity of natural steroidal hormone estrone by ligninolytic enzymes from white rot fungi.
    Tamagawa Y; Yamaki R; Hirai H; Kawai S; Nishida T
    Chemosphere; 2006 Sep; 65(1):97-101. PubMed ID: 16584756
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Patterns of lignin degradation and oxidative enzyme secretion by different wood- and litter-colonizing basidiomycetes and ascomycetes grown on beech-wood.
    Liers C; Arnstadt T; Ullrich R; Hofrichter M
    FEMS Microbiol Ecol; 2011 Oct; 78(1):91-102. PubMed ID: 21631549
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Lignin degradation by selected fungal species.
    Knežević A; Milovanović I; Stajić M; Lončar N; Brčeski I; Vukojević J; Cilerdžić J
    Bioresour Technol; 2013 Jun; 138():117-23. PubMed ID: 23612169
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Evaluation of bioremediation potentiality of ligninolytic Serratia liquefaciens for detoxification of pulp and paper mill effluent.
    Haq I; Kumar S; Kumari V; Singh SK; Raj A
    J Hazard Mater; 2016 Mar; 305():190-199. PubMed ID: 26686478
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Genome-based engineering of ligninolytic enzymes in fungi.
    Asemoloye MD; Marchisio MA; Gupta VK; Pecoraro L
    Microb Cell Fact; 2021 Jan; 20(1):20. PubMed ID: 33478513
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Biodegradation of polycyclic aromatic hydrocarbons (PAHs) by fungal enzymes: A review.
    Kadri T; Rouissi T; Kaur Brar S; Cledon M; Sarma S; Verma M
    J Environ Sci (China); 2017 Jan; 51():52-74. PubMed ID: 28115152
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Phenolic mediators enhance the manganese peroxidase catalyzed oxidation of recalcitrant lignin model compounds and synthetic lignin.
    Nousiainen P; Kontro J; Manner H; Hatakka A; Sipilä J
    Fungal Genet Biol; 2014 Nov; 72():137-149. PubMed ID: 25108071
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Pollutant degradation by white rot fungi.
    Barr DP; Aust SD
    Rev Environ Contam Toxicol; 1994; 138():49-72. PubMed ID: 7938784
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.