These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
175 related articles for article (PubMed ID: 1900417)
1. Regulation of Cu,Zn superoxide dismutase with copper. Caeruloplasmin maintains levels of functional enzyme activity during differentiation of K562 cells. Percival SS; Harris ED Biochem J; 1991 Feb; 274 ( Pt 1)(Pt 1):153-8. PubMed ID: 1900417 [TBL] [Abstract][Full Text] [Related]
2. Regulation of aortic CuZn-superoxide dismutase with copper. Caeruloplasmin and albumin re-activate and transfer copper to the enzyme in culture. Dameron CT; Harris ED Biochem J; 1987 Dec; 248(3):669-75. PubMed ID: 3435477 [TBL] [Abstract][Full Text] [Related]
3. Copper-dependent metabolism of Cu,Zn-superoxide dismutase in human K562 cells. Lack of specific transcriptional activation and accumulation of a partially inactivated enzyme. Steinkühler C; Carrì MT; Micheli G; Knoepfel L; Weser U; Rotilio G Biochem J; 1994 Sep; 302 ( Pt 3)(Pt 3):687-94. PubMed ID: 7945192 [TBL] [Abstract][Full Text] [Related]
4. Copper as a cofactor and regulator of copper,zinc superoxide dismutase. Harris ED J Nutr; 1992 Mar; 122(3 Suppl):636-40. PubMed ID: 1542024 [TBL] [Abstract][Full Text] [Related]
5. Increase of Cu,Zn-superoxide dismutase activity during differentiation of human K562 cells involves activation by copper of a constantly expressed copper-deficient protein. Steinkühler C; Sapora O; Carrì MT; Nagel W; Marcocci L; Ciriolo MR; Weser U; Rotilio G J Biol Chem; 1991 Dec; 266(36):24580-7. PubMed ID: 1761555 [TBL] [Abstract][Full Text] [Related]
6. Ascorbate enhances copper transport from ceruloplasmin into human K562 cells. Percival SS; Harris ED J Nutr; 1989 May; 119(5):779-84. PubMed ID: 2723826 [TBL] [Abstract][Full Text] [Related]
7. Effects of inflammation and copper intake on rat liver and erythrocyte Cu-Zn superoxide dismutase activity levels. DiSilvestro RA; Marten JT J Nutr; 1990 Oct; 120(10):1223-7. PubMed ID: 2213250 [TBL] [Abstract][Full Text] [Related]
8. Binding of polyaminocarboxylate chelators to the active-site copper inhibits the GSNO-reductase activity but not the superoxide dismutase activity of Cu,Zn-superoxide dismutase. Ye M; English AM Biochemistry; 2006 Oct; 45(42):12723-32. PubMed ID: 17042490 [TBL] [Abstract][Full Text] [Related]
9. Copper is required to maintain Cu/Zn-superoxide dismutase activity during HL-60 cell differentiation. Percival SS; Bae B; Patrice M Proc Soc Exp Biol Med; 1993 May; 203(1):78-83. PubMed ID: 7682718 [TBL] [Abstract][Full Text] [Related]
10. Copper transport: insights into a ceruloplasmin-based delivery system. Harris ED; Percival SS Adv Exp Med Biol; 1989; 258():95-102. PubMed ID: 2626993 [TBL] [Abstract][Full Text] [Related]
11. Purification and biochemical characterization of a novel copper, zinc superoxide dismutase from liver of camel (Camelus dromedarius): An antioxidant enzyme with unique properties. Chafik A; Essamadi A; Çelik SY; Mavi A Bioorg Chem; 2019 May; 86():428-436. PubMed ID: 30771689 [TBL] [Abstract][Full Text] [Related]
12. The utilization of copper and its role in the biosynthesis of copper-containing proteins in the fungus, Dactylium dendroides. Shatzman AR; Kosman DJ Biochim Biophys Acta; 1978 Nov; 544(1):163-79. PubMed ID: 568946 [TBL] [Abstract][Full Text] [Related]
13. Effects of different copper sources and levels on plasma superoxide dismutase, lipid peroxidation, and copper status of lambs. Cheng J; Ma H; Fan C; Zhang Z; Jia Z; Zhu X; Wang L Biol Trace Elem Res; 2011 Dec; 144(1-3):570-9. PubMed ID: 21556734 [TBL] [Abstract][Full Text] [Related]
14. Characterization of Copper(II) and Zinc(II) Complexes of Peptides Mimicking the CuZnSOD Enzyme. Székely E; Molnár M; Lihi N; Várnagy K Molecules; 2024 Feb; 29(4):. PubMed ID: 38398547 [TBL] [Abstract][Full Text] [Related]
15. Copper exposure induces oxidative injury, disturbs the antioxidant system and changes the Nrf2/ARE (CuZnSOD) signaling in the fish brain: protective effects of myo-inositol. Jiang WD; Liu Y; Hu K; Jiang J; Li SH; Feng L; Zhou XQ Aquat Toxicol; 2014 Oct; 155():301-13. PubMed ID: 25087001 [TBL] [Abstract][Full Text] [Related]
16. Purification and ultrastructural localization of a copper-zinc superoxide dismutase (CuZnSOD) from the entomopathogenic and acaricide fungus Metarhizium anisopliae. Tolfo Bittencourt SE; Amaral de Castro L; Estrazulas Farias S; Nair Bao S; Schrank A; Henning Vainstein M Res Microbiol; 2004 Oct; 155(8):681-7. PubMed ID: 15380557 [TBL] [Abstract][Full Text] [Related]
17. Overexpression of CuZn superoxide dismutase protects RAW 264.7 macrophages against nitric oxide cytotoxicity. Brockhaus F; Brüne B Biochem J; 1999 Mar; 338 ( Pt 2)(Pt 2):295-303. PubMed ID: 10024504 [TBL] [Abstract][Full Text] [Related]
18. Mechanisms of caeruloplasmin biosynthesis in normal and copper-deficient rats. Gitlin JD; Schroeder JJ; Lee-Ambrose LM; Cousins RJ Biochem J; 1992 Mar; 282 ( Pt 3)(Pt 3):835-9. PubMed ID: 1554368 [TBL] [Abstract][Full Text] [Related]
19. Cu,Zn superoxide dismutase and copper deprivation and toxicity in Saccharomyces cerevisiae. Greco MA; Hrab DI; Magner W; Kosman DJ J Bacteriol; 1990 Jan; 172(1):317-25. PubMed ID: 2403543 [TBL] [Abstract][Full Text] [Related]
20. Do indomethacin and cimetidine or Cu(cimetadine)2 affect the nature of superoxide dismutase activity in the liver of copper-deficient rats? Konstantinova SG; Radeva-Domuschieva DR; Russanov EM Gen Pharmacol; 1994 Jul; 25(4):645-50. PubMed ID: 7958724 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]