BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 19004521)

  • 1. Effects of initial iron corrosion rate on long-term performance of iron permeable reactive barriers: column experiments and numerical simulation.
    suk O J; Jeen SW; Gillham RW; Gui L
    J Contam Hydrol; 2009 Jan; 103(3-4):145-56. PubMed ID: 19004521
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Performance evaluation of granular iron for removing hexavalent chromium under different geochemical conditions.
    Jeen SW; Blowes DW; Gillham RW
    J Contam Hydrol; 2008 Jan; 95(1-2):76-91. PubMed ID: 17913283
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modeling porosity reductions caused by mineral fouling in continuous-wall permeable reactive barriers.
    Li L; Benson CH; Lawson EM
    J Contam Hydrol; 2006 Feb; 83(1-2):89-121. PubMed ID: 16386821
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Treatment of trichloroethene and hexavalent chromium by granular iron in the presence of dissolved CaCO3.
    Jeen SW; Yang Y; Gui L; Gillham RW
    J Contam Hydrol; 2013 Jan; 144(1):108-21. PubMed ID: 23247400
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effect of silica on the degradation of organohalides in granular iron columns.
    Kohn T; Roberts AL
    J Contam Hydrol; 2006 Feb; 83(1-2):70-88. PubMed ID: 16364495
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Competing TCE and cis-DCE degradation kinetics by zero-valent iron-experimental results and numerical simulation.
    Schäfer D; Köber R; Dahmke A
    J Contam Hydrol; 2003 Sep; 65(3-4):183-202. PubMed ID: 12935949
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Impact of mineral fouling on hydraulic behavior of permeable reactive barriers.
    Lin L; Benson CH; Lawson EM
    Ground Water; 2005; 43(4):582-96. PubMed ID: 16029183
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hydrogeochemical and biological processes affecting the long-term performance of an iron-based permeable reactive barrier.
    Zolla V; Freyria FS; Sethi R; Di Molfetta A
    J Environ Qual; 2009; 38(3):897-908. PubMed ID: 19329678
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modelling the long-term performance of zero-valent iron using a spatio-temporal approach for iron aging.
    Kouznetsova I; Bayer P; Ebert M; Finkel M
    J Contam Hydrol; 2007 Feb; 90(1-2):58-80. PubMed ID: 17113680
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Investigating dominant processes in ZVI permeable reactive barriers using reactive transport modeling.
    Weber A; Ruhl AS; Amos RT
    J Contam Hydrol; 2013 Aug; 151():68-82. PubMed ID: 23743511
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of dissolved inorganic carbon and calcium on gas formation and accumulation in iron permeable reactive barriers.
    Ruhl AS; Weber A; Jekel M
    J Contam Hydrol; 2012 Nov; 142-143():22-32. PubMed ID: 23069647
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Predictions of long-term performance of granular iron permeable reactive barriers: field-scale evaluation.
    Jeen SW; Gillham RW; Przepiora A
    J Contam Hydrol; 2011 Apr; 123(1-2):50-64. PubMed ID: 21237528
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biogeochemistry of two types of permeable reactive barriers, organic carbon and iron-bearing organic carbon for mine drainage treatment: column experiments.
    Guo Q; Blowes DW
    J Contam Hydrol; 2009 Jul; 107(3-4):128-39. PubMed ID: 19467564
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Predicting longevity of iron permeable reactive barriers using multiple iron deactivation models.
    Carniato L; Schoups G; Seuntjens P; Van Nooten T; Simons Q; Bastiaens L
    J Contam Hydrol; 2012 Nov; 142-143():93-108. PubMed ID: 23174212
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Integrated evaluation of the performance of a more than seven year old permeable reactive barrier at a site contaminated with chlorinated aliphatic hydrocarbons (CAHs).
    Muchitsch N; Van Nooten T; Bastiaens L; Kjeldsen P
    J Contam Hydrol; 2011 Nov; 126(3-4):258-70. PubMed ID: 22115091
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Investigation of gas production and entrapment in granular iron medium.
    Kamolpornwijit W; Liang L
    J Contam Hydrol; 2006 Jan; 82(3-4):338-56. PubMed ID: 16337024
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Long-term geochemical evolution of the near field repository: insights from reactive transport modelling and experimental evidences.
    Arcos D; Grandia F; Domènech C; Fernández AM; Villar MV; Muurinen A; Carlsson T; Sellin P; Hernán P
    J Contam Hydrol; 2008 Dec; 102(3-4):196-209. PubMed ID: 18992963
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reactive transport modeling of trichloroethene treatment with declining reactivity of iron.
    Jeen SW; Mayer KU; Gillham RW; Blowes DW
    Environ Sci Technol; 2007 Feb; 41(4):1432-8. PubMed ID: 17593753
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modeling gas formation and mineral precipitation in a granular iron column.
    Jeen SW; Amos RT; Blowes DW
    Environ Sci Technol; 2012 Jun; 46(12):6742-9. PubMed ID: 22540940
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Preferential flow path development and its influence on long-term PRB performance: column study.
    Kamolpornwijit W; Liang L; West OR; Moline GR; Sullivan AB
    J Contam Hydrol; 2003 Nov; 66(3-4):161-78. PubMed ID: 14568397
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.