These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
146 related articles for article (PubMed ID: 19004797)
1. An artificial molecular switch that mimics the visual pigment and completes its photocycle in picoseconds. Sinicropi A; Martin E; Ryazantsev M; Helbing J; Briand J; Sharma D; Léonard J; Haacke S; Cannizzo A; Chergui M; Zanirato V; Fusi S; Santoro F; Basosi R; Ferré N; Olivucci M Proc Natl Acad Sci U S A; 2008 Nov; 105(46):17642-7. PubMed ID: 19004797 [TBL] [Abstract][Full Text] [Related]
2. Photoisomerization efficiency in UV-absorbing visual pigments: protein-directed isomerization of an unprotonated retinal Schiff base. Tsutsui K; Imai H; Shichida Y Biochemistry; 2007 May; 46(21):6437-45. PubMed ID: 17474760 [TBL] [Abstract][Full Text] [Related]
3. Transition of rhodopsin into the active metarhodopsin II state opens a new light-induced pathway linked to Schiff base isomerization. Ritter E; Zimmermann K; Heck M; Hofmann KP; Bartl FJ J Biol Chem; 2004 Nov; 279(46):48102-11. PubMed ID: 15322129 [TBL] [Abstract][Full Text] [Related]
4. A nonbleachable rhodopsin analogue with a slow photocycle. Vogel R; Fan GB; Ludeke S; Siebert F; Sheves M J Biol Chem; 2002 Oct; 277(43):40222-8. PubMed ID: 12177056 [TBL] [Abstract][Full Text] [Related]
5. Rapid release of retinal from a cone visual pigment following photoactivation. Chen MH; Kuemmel C; Birge RR; Knox BE Biochemistry; 2012 May; 51(20):4117-25. PubMed ID: 22217337 [TBL] [Abstract][Full Text] [Related]
6. Isorhodopsin II: artificial photosensitive pigment formed from 9,13-dicis retinal. Crouch R; Purvin V; Nakanishi K; Ebrey T Proc Natl Acad Sci U S A; 1975 Apr; 72(4):1538-42. PubMed ID: 1055424 [TBL] [Abstract][Full Text] [Related]
7. E113 is required for the efficient photoisomerization of the unprotonated chromophore in a UV-absorbing visual pigment. Tsutsui K; Imai H; Shichida Y Biochemistry; 2008 Oct; 47(41):10829-33. PubMed ID: 18803408 [TBL] [Abstract][Full Text] [Related]
8. Mechanism of isomerization of rhodopsin studied by use of 11-cis-locked rhodopsin analogues excited with a picosecond laser pulse. Kandori H; Matuoka S; Shichida Y; Yoshizawa T; Ito M; Tsukida K; Balogh-Nair V; Nakanishi K Biochemistry; 1989 Jul; 28(15):6460-7. PubMed ID: 2790007 [TBL] [Abstract][Full Text] [Related]
9. Rhodopsin with 11-cis-locked chromophore is capable of forming an active state photoproduct. Fan G; Siebert F; Sheves M; Vogel R J Biol Chem; 2002 Oct; 277(43):40229-34. PubMed ID: 12177057 [TBL] [Abstract][Full Text] [Related]
10. Conformational changes in the photocycle of Anabaena sensory rhodopsin: absence of the Schiff base counterion protonation signal. Bergo VB; Ntefidou M; Trivedi VD; Amsden JJ; Kralj JM; Rothschild KJ; Spudich JL J Biol Chem; 2006 Jun; 281(22):15208-14. PubMed ID: 16537532 [TBL] [Abstract][Full Text] [Related]
11. The pKa of the protonated Schiff bases of gecko cone and octopus visual pigments. Liang J; Steinberg G; Livnah N; Sheves M; Ebrey TG; Tsuda M Biophys J; 1994 Aug; 67(2):848-54. PubMed ID: 7948697 [TBL] [Abstract][Full Text] [Related]
12. FTIR studies of the photoactivation processes in squid retinochrome. Furutani Y; Terakita A; Shichida Y; Kandori H Biochemistry; 2005 Jun; 44(22):7988-97. PubMed ID: 15924417 [TBL] [Abstract][Full Text] [Related]
13. Computational and Spectroscopic Characterization of the Photocycle of an Artificial Rhodopsin. Manathunga M; Jenkins AJ; Orozco-Gonzalez Y; Ghanbarpour A; Borhan B; Geiger JH; Larsen DS; Olivucci M J Phys Chem Lett; 2020 Jun; 11(11):4245-4252. PubMed ID: 32374610 [TBL] [Abstract][Full Text] [Related]
14. Photochemistry of visual pigments: an interpretation of spectral changes in terms of molecular associations and isomerization. Hárosi FI; Favrot J; Leclercq JM; Vocelle D; Sándorfy C Rev Can Biol; 1978 Dec; 37(4):257-71. PubMed ID: 734197 [TBL] [Abstract][Full Text] [Related]
15. Coupled HOOP signature correlates with quantum yield of isorhodopsin and analog pigments. Bovee-Geurts PHM; Lugtenburg J; DeGrip WJ Biochim Biophys Acta Bioenerg; 2017 Feb; 1858(2):118-125. PubMed ID: 27836700 [TBL] [Abstract][Full Text] [Related]
16. Unique Photochemistry Observed in a New Microbial Rhodopsin. Kataoka C; Inoue K; Katayama K; Béjà O; Kandori H J Phys Chem Lett; 2019 Sep; 10(17):5117-5121. PubMed ID: 31433641 [TBL] [Abstract][Full Text] [Related]
17. Structure, initial excited-state relaxation, and energy storage of rhodopsin resolved at the multiconfigurational perturbation theory level. Andruniów T; Ferré N; Olivucci M Proc Natl Acad Sci U S A; 2004 Dec; 101(52):17908-13. PubMed ID: 15604139 [TBL] [Abstract][Full Text] [Related]
18. Photochemistry of rhodopsin and isorhodopsin investigated on a picosecond time scale. Monger TG; Alfano RR; Callender RH Biophys J; 1979 Jul; 27(1):105-15. PubMed ID: 262374 [TBL] [Abstract][Full Text] [Related]
19. The photoreaction of vacuum-dried rhodopsin at low temperature: evidence for charge stabilization by water. Ganter UM; Schmid ED; Siebert F J Photochem Photobiol B; 1988 Dec; 2(4):417-26. PubMed ID: 3149997 [TBL] [Abstract][Full Text] [Related]
20. Photochemical reaction of 9-cis-retro-gamma-rhodopsin at low temperatures. Kawamura S; Yoshizawa T; Horiuchi K; Ito M; Kodama A; Tsukida K Biochim Biophys Acta; 1979 Oct; 548(1):147-52. PubMed ID: 486439 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]